Abstract
A structural transition from a 3(10)-helix to an alpha-helix has been characterized at high resolution for an octapeptide segment located in 3 different sequences. Three synthetic peptides, decapeptide (A) Boc-Aib-Trp-(Leu-Aib-Ala)2-Phe-Aib-OMe, nonapeptide (B) Boc-Trp-(Leu-Aib-Ala)2-Phe-Aib-OMe, and octapeptide (C) Boc-(Leu-Aib-Ala)2-Phe-Aib-OMe, are completely helical in their respective crystals. At 0.9 A resolution, R factors for A, B, and C are 8.3%, 5.4%, and 7.3%, respectively. The octapeptide and nonapeptide form ideal 3(10)-helices with average torsional angles phi(N-C alpha) and psi(C alpha-C') of -57 degrees, -26 degrees C and -60 degrees, -27 degrees for B. The 10-residue peptide (A) begins as a 3(10)-helix and abruptly changes to an alpha-helix at carbonyl O(3), which is the acceptor for both a 4-->1 hydrogen bond with N(6)H and a 5-->1 hydrogen with N(7)H, even though the last 8 residues have the same sequence in all 3 peptides. The average phi, psi angles in the decapeptide are -58 degrees, -28 degrees for residues 1-3 and -63 degrees, -41 degrees for residues 4-10. The packing of helices in the crystals does not provide any obvious reason for the transition in helix type. Fourier transform infrared studies in the solid state also provide evidence for a 3(10)- to alpha-helix transition with the amide I band appearing at 1,656-1,657 cm-1 in the 9- and 10-residue peptides, whereas in shorter sequences the band is observed at 1,667 cm-1.
Full Text
The Full Text of this article is available as a PDF (722.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barlow D. J., Thornton J. M. Helix geometry in proteins. J Mol Biol. 1988 Jun 5;201(3):601–619. doi: 10.1016/0022-2836(88)90641-9. [DOI] [PubMed] [Google Scholar]
- Basu G., Bagchi K., Kuki A. Conformational preferences of oligopeptides rich in alpha-aminoisobutyric acid. I. Observation of a 3(10)/alpha-helical transition upon sequence permutation. Biopolymers. 1991 Dec;31(14):1763–1774. doi: 10.1002/bip.360311410. [DOI] [PubMed] [Google Scholar]
- Basu G., Kuki A. Evidence for a 3(10)-helical conformation of an eight-residue peptide from 1H-1H rotating frame Overhauser studies. Biopolymers. 1993 Jun;33(6):995–1000. doi: 10.1002/bip.360330615. [DOI] [PubMed] [Google Scholar]
- Fiori W. R., Miick S. M., Millhauser G. L. Increasing sequence length favors alpha-helix over 3(10)-helix in alanine-based peptides: evidence for a length-dependent structural transition. Biochemistry. 1993 Nov 16;32(45):11957–11962. doi: 10.1021/bi00096a003. [DOI] [PubMed] [Google Scholar]
- Huston S. E., Marshall G. R. Alpha/3(10)-helix transitions in alpha-methylalanine homopeptides: conformational transition pathway and potential of mean force. Biopolymers. 1994 Jan;34(1):75–90. doi: 10.1002/bip.360340109. [DOI] [PubMed] [Google Scholar]
- Karle I. L., Balaram P. Structural characteristics of alpha-helical peptide molecules containing Aib residues. Biochemistry. 1990 Jul 24;29(29):6747–6756. doi: 10.1021/bi00481a001. [DOI] [PubMed] [Google Scholar]
- Karle I. L., Flippen-Anderson J. L., Sukumar M., Balaram P. Differences in hydration and association of helical Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-(Val-Ala-Leu-Aib)2-OMe.xH2O in two crystalline polymorphs. J Med Chem. 1992 Oct 16;35(21):3885–3889. doi: 10.1021/jm00099a016. [DOI] [PubMed] [Google Scholar]
- Karle I. L., Flippen-Anderson J. L., Sukumar M., Balaram P. Helix packing of leucine-rich peptides: a parallel leucine ladder in the structure of Boc-Aib-Leu-Aib-Aib-Leu-Leu-Leu-Aib-Leu-Aib-OMe. Proteins. 1992 Apr;12(4):324–330. doi: 10.1002/prot.340120404. [DOI] [PubMed] [Google Scholar]
- Karle I. L., Flippen-Anderson J. L., Sukumar M., Balaram P. Parallel and antiparallel aggregation of alpha-helices. Crystal structures of two apolar decapeptides X-Trp-Ile-Ala-Aib-Ile-Val-Aib-Leu-Aib-Pro-OMe (X = Boc, Ac). Int J Pept Protein Res. 1990 Jun;35(6):518–526. [PubMed] [Google Scholar]
- Karle I. L., Flippen-Anderson J. L., Uma K., Balaram H., Balaram P. Alpha-helix and mixed 3(10)/alpha-helix in cocrystallized conformers of Boc-Aib-Val-Aib-Aib-Val-Val-Val-Aib-Val-Aib-OMe. Proc Natl Acad Sci U S A. 1989 Feb;86(3):765–769. doi: 10.1073/pnas.86.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karle I. L., Flippen-Anderson J. L., Uma K., Balaram P. Helix aggregation in peptide crystals: occurrence of either all parallel or antiparallel packing motifs for alpha-helices in polymorphs of Boc-Aib-Ala-Leu-Ala-Leu-Aib-Leu-Ala-Leu-Aib-OMe. Biopolymers. 1990 Dec;29(14):1835–1845. doi: 10.1002/bip.360291414. [DOI] [PubMed] [Google Scholar]
- Karle I. L., Flippen-Anderson J. L., Uma K., Balaram P. Parallel zippers formed by alpha-helical peptide columns in crystals of Boc-Aib-Glu(OBzl)-Leu-Aib-Ala-Leu-Aib-Ala-Lys(Z)-Aib-OMe. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7921–7925. doi: 10.1073/pnas.87.20.7921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karle I. L. Folding, aggregation and molecular recognition in peptides. Acta Crystallogr B. 1992 Aug 1;48(Pt 4):341–356. doi: 10.1107/s0108768192000673. [DOI] [PubMed] [Google Scholar]
- Karle I. L., Sukumar M., Balaram P. Parallel packing of alpha-helices in crystals of the zervamicin IIA analog Boc-Trp-Ile-Ala-Aib-Ile-Val-Aib-Leu-Aib-Pro-OMe.2H2O. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9284–9288. doi: 10.1073/pnas.83.24.9284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kavanaugh J. S., Moo-Penn W. F., Arnone A. Accommodation of insertions in helices: the mutation in hemoglobin Catonsville (Pro 37 alpha-Glu-Thr 38 alpha) generates a 3(10)-->alpha bulge. Biochemistry. 1993 Mar 16;32(10):2509–2513. doi: 10.1021/bi00061a007. [DOI] [PubMed] [Google Scholar]
- Keefe L. J., Sondek J., Shortle D., Lattman E. E. The alpha aneurism: a structural motif revealed in an insertion mutant of staphylococcal nuclease. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3275–3279. doi: 10.1073/pnas.90.8.3275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennedy D. F., Crisma M., Toniolo C., Chapman D. Studies of peptides forming 3(10)- and alpha-helices and beta-bend ribbon structures in organic solution and in model biomembranes by Fourier transform infrared spectroscopy. Biochemistry. 1991 Jul 2;30(26):6541–6548. doi: 10.1021/bi00240a026. [DOI] [PubMed] [Google Scholar]
- Miick S. M., Martinez G. V., Fiori W. R., Todd A. P., Millhauser G. L. Short alanine-based peptides may form 3(10)-helices and not alpha-helices in aqueous solution. Nature. 1992 Oct 15;359(6396):653–655. doi: 10.1038/359653a0. [DOI] [PubMed] [Google Scholar]
- Pavone V., Benedetti E., Di Blasio B., Pedone C., Santini A., Bavoso A., Toniolo C., Crisma M., Sartore L. Critical main-chain length for conformational conversion from 3(10)-helix to alpha-helix in polypeptides. J Biomol Struct Dyn. 1990 Jun;7(6):1321–1331. [PubMed] [Google Scholar]
- Prasad B. V., Balaram P. The stereochemistry of peptides containing alpha-aminoisobutyric acid. CRC Crit Rev Biochem. 1984;16(4):307–348. doi: 10.3109/10409238409108718. [DOI] [PubMed] [Google Scholar]
- Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
- Sudha T. S., Vijayakumar E. K., Balaram P. Circular dichroism studies of helical oligopeptides. Can 3(10) and alpha-helical conformations be chiroptically distinguished? Int J Pept Protein Res. 1983 Oct;22(4):464–468. doi: 10.1111/j.1399-3011.1983.tb02116.x. [DOI] [PubMed] [Google Scholar]
- Wada A. The alpha-helix as an electric macro-dipole. Adv Biophys. 1976:1–63. [PubMed] [Google Scholar]