Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Sep;3(9):1355–1361. doi: 10.1002/pro.5560030901

Structure and functions of arrestins.

K Palczewski 1
PMCID: PMC2142942  PMID: 7833798

Abstract

Transmembrane signal transductions in a variety of cell types that mediate signals as diverse as those carried by neurotransmitters, hormones, and sensory signals share basic biochemical mechanisms that include: (1) an extracellular perturbation (neurotransmitter, hormone, odor, light); (2) specific receptors; (3) coupling proteins, such as G proteins; and (4) effector enzymes or ion channels. Parallel to these amplification reactions, receptors are precisely inactivated by mechanisms that involve protein kinases and regulatory proteins called arrestins. The structure and functions of arrestins are the focus of this review.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attramadal H., Arriza J. L., Aoki C., Dawson T. M., Codina J., Kwatra M. M., Snyder S. H., Caron M. G., Lefkowitz R. J. Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. J Biol Chem. 1992 Sep 5;267(25):17882–17890. [PubMed] [Google Scholar]
  2. Bennett N., Sitaramayya A. Inactivation of photoexcited rhodopsin in retinal rods: the roles of rhodopsin kinase and 48-kDa protein (arrestin). Biochemistry. 1988 Mar 8;27(5):1710–1715. doi: 10.1021/bi00405a049. [DOI] [PubMed] [Google Scholar]
  3. Benovic J. L., Kühn H., Weyand I., Codina J., Caron M. G., Lefkowitz R. J. Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc Natl Acad Sci U S A. 1987 Dec;84(24):8879–8882. doi: 10.1073/pnas.84.24.8879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bentrop J., Plangger A., Paulsen R. An arrestin homolog of blowfly photoreceptors stimulates visual-pigment phosphorylation by activating a membrane-associated protein kinase. Eur J Biochem. 1993 Aug 15;216(1):67–73. doi: 10.1111/j.1432-1033.1993.tb18117.x. [DOI] [PubMed] [Google Scholar]
  5. Breitman M. L., Tsuda M., Usukura J., Kikuchi T., Zucconi A., Khoo W., Shinohara T. Expression of S-antigen in retina, pineal gland, lens, and brain is directed by 5'-flanking sequences. J Biol Chem. 1991 Aug 15;266(23):15505–15510. [PubMed] [Google Scholar]
  6. Craft C. M., Whitmore D. H., Wiechmann A. F. Cone arrestin identified by targeting expression of a functional family. J Biol Chem. 1994 Feb 11;269(6):4613–4619. [PubMed] [Google Scholar]
  7. Danciger M., Kozak C. A., Tsuda M., Shinohara T., Farber D. B. The gene for retinal S-antigen (48-kDa protein) maps to the centromeric portion of mouse chromosome 1 near Idh-1. Genomics. 1989 Aug;5(2):378–381. doi: 10.1016/0888-7543(89)90075-x. [DOI] [PubMed] [Google Scholar]
  8. Dawson T. M., Arriza J. L., Jaworsky D. E., Borisy F. F., Attramadal H., Lefkowitz R. J., Ronnett G. V. Beta-adrenergic receptor kinase-2 and beta-arrestin-2 as mediators of odorant-induced desensitization. Science. 1993 Feb 5;259(5096):825–829. doi: 10.1126/science.8381559. [DOI] [PubMed] [Google Scholar]
  9. Dolph P. J., Ranganathan R., Colley N. J., Hardy R. W., Socolich M., Zuker C. S. Arrestin function in inactivation of G protein-coupled receptor rhodopsin in vivo. Science. 1993 Jun 25;260(5116):1910–1916. doi: 10.1126/science.8316831. [DOI] [PubMed] [Google Scholar]
  10. Garcia-Quintana D., Garriga P., Manyosa J. Study of the structure of arrestin (S-antigen) from bovine photoreceptors by FTIR spectroscopy. Biochim Biophys Acta. 1992 Aug 21;1122(3):269–272. doi: 10.1016/0167-4838(92)90403-z. [DOI] [PubMed] [Google Scholar]
  11. Ghalayini A. J., Anderson R. E. Activation of bovine rod outer segment phospholipase C by arrestin. J Biol Chem. 1992 Sep 5;267(25):17977–17982. [PubMed] [Google Scholar]
  12. Glitscher W., Rüppel H. Evidence for ATP-ase activity of arrestin from bovine photoreceptors. FEBS Lett. 1991 May 6;282(2):431–435. doi: 10.1016/0014-5793(91)80530-g. [DOI] [PubMed] [Google Scholar]
  13. Gurevich V. V., Benovic J. L. Cell-free expression of visual arrestin. Truncation mutagenesis identifies multiple domains involved in rhodopsin interaction. J Biol Chem. 1992 Oct 25;267(30):21919–21923. [PubMed] [Google Scholar]
  14. Gurevich V. V., Benovic J. L. Visual arrestin interaction with rhodopsin. Sequential multisite binding ensures strict selectivity toward light-activated phosphorylated rhodopsin. J Biol Chem. 1993 Jun 5;268(16):11628–11638. [PubMed] [Google Scholar]
  15. Gurevich V. V., Richardson R. M., Kim C. M., Hosey M. M., Benovic J. L. Binding of wild type and chimeric arrestins to the m2 muscarinic cholinergic receptor. J Biol Chem. 1993 Aug 15;268(23):16879–16882. [PubMed] [Google Scholar]
  16. Hargrave P. A., Hamm H. E., Hofmann K. P. Interaction of rhodopsin with the G-protein, transducin. Bioessays. 1993 Jan;15(1):43–50. doi: 10.1002/bies.950150107. [DOI] [PubMed] [Google Scholar]
  17. Hofmann K. P., Pulvermüller A., Buczyłko J., Van Hooser P., Palczewski K. The role of arrestin and retinoids in the regeneration pathway of rhodopsin. J Biol Chem. 1992 Aug 5;267(22):15701–15706. [PubMed] [Google Scholar]
  18. Huppertz B., Weyand I., Bauer P. J. Ca2+ binding capacity of cytoplasmic proteins from rod photoreceptors is mainly due to arrestin. J Biol Chem. 1990 Jun 5;265(16):9470–9475. [PubMed] [Google Scholar]
  19. Hyde D. R., Mecklenburg K. L., Pollock J. A., Vihtelic T. S., Benzer S. Twenty Drosophila visual system cDNA clones: one is a homolog of human arrestin. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1008–1012. doi: 10.1073/pnas.87.3.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Inglese J., Freedman N. J., Koch W. J., Lefkowitz R. J. Structure and mechanism of the G protein-coupled receptor kinases. J Biol Chem. 1993 Nov 15;268(32):23735–23738. [PubMed] [Google Scholar]
  21. Jeansonne N. E., Jazwinski S. M., Donoso L. A. A 48-kDa, S-antigen-like phosphoprotein in yeast DNA-replicative complex preparations. J Biol Chem. 1991 Aug 5;266(22):14675–14680. [PubMed] [Google Scholar]
  22. Komori N., Rider M. A., Takemoto D. J., Shichi H., Matsumoto H. ADP-ribosylation of bovine S-antigen by cholera toxin. Biochem Biophys Res Commun. 1988 Nov 15;156(3):1160–1165. doi: 10.1016/s0006-291x(88)80754-x. [DOI] [PubMed] [Google Scholar]
  23. Kotake S., Hey P., Mirmira R. G., Copeland R. A. Physicochemical characterization of bovine retinal arrestin. Arch Biochem Biophys. 1991 Feb 15;285(1):126–133. doi: 10.1016/0003-9861(91)90338-j. [DOI] [PubMed] [Google Scholar]
  24. Krupnick J. G., Gurevich V. V., Schepers T., Hamm H. E., Benovic J. L. Arrestin-rhodopsin interaction. Multi-site binding delineated by peptide inhibition. J Biol Chem. 1994 Feb 4;269(5):3226–3232. [PubMed] [Google Scholar]
  25. LeVine H., 3rd, Smith D. P., Whitney M., Malicki D. M., Dolph P. J., Smith G. F., Burkhart W., Zuker C. S. Isolation of a novel visual-system-specific arrestin: an in vivo substrate for light-dependent phosphorylation. Mech Dev. 1990 Dec;33(1):19–25. doi: 10.1016/0925-4773(90)90131-5. [DOI] [PubMed] [Google Scholar]
  26. Lohse M. J., Andexinger S., Pitcher J., Trukawinski S., Codina J., Faure J. P., Caron M. G., Lefkowitz R. J. Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of beta-arrestin and arrestin in the beta 2-adrenergic receptor and rhodopsin systems. J Biol Chem. 1992 Apr 25;267(12):8558–8564. [PubMed] [Google Scholar]
  27. Lohse M. J., Benovic J. L., Codina J., Caron M. G., Lefkowitz R. J. beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science. 1990 Jun 22;248(4962):1547–1550. doi: 10.1126/science.2163110. [DOI] [PubMed] [Google Scholar]
  28. Matsumoto H., Kurien B. T., Takagi Y., Kahn E. S., Kinumi T., Komori N., Yamada T., Hayashi F., Isono K., Pak W. L. Phosrestin I undergoes the earliest light-induced phosphorylation by a calcium/calmodulin-dependent protein kinase in Drosophila photoreceptors. Neuron. 1994 May;12(5):997–1010. doi: 10.1016/0896-6273(94)90309-3. [DOI] [PubMed] [Google Scholar]
  29. Murakami A., Yajima T., Sakuma H., McLaren M. J., Inana G. X-arrestin: a new retinal arrestin mapping to the X chromosome. FEBS Lett. 1993 Nov 15;334(2):203–209. doi: 10.1016/0014-5793(93)81712-9. [DOI] [PubMed] [Google Scholar]
  30. Ngo J. T., Klisak I., Sparkes R. S., Mohandas T., Yamaki K., Shinohara T., Bateman J. B. Assignment of the S-antigen gene (SAG) to human chromosome 2q24-q37. Genomics. 1990 May;7(1):84–87. doi: 10.1016/0888-7543(90)90521-u. [DOI] [PubMed] [Google Scholar]
  31. Ohguro H., Johnson R. S., Ericsson L. H., Walsh K. A., Palczewski K. Control of rhodopsin multiple phosphorylation. Biochemistry. 1994 Feb 1;33(4):1023–1028. doi: 10.1021/bi00170a022. [DOI] [PubMed] [Google Scholar]
  32. Ohguro H., Palczewski K., Ericsson L. H., Walsh K. A., Johnson R. S. Sequential phosphorylation of rhodopsin at multiple sites. Biochemistry. 1993 Jun 1;32(21):5718–5724. doi: 10.1021/bi00072a030. [DOI] [PubMed] [Google Scholar]
  33. Palczewski K., Benovic J. L. G-protein-coupled receptor kinases. Trends Biochem Sci. 1991 Oct;16(10):387–391. doi: 10.1016/0968-0004(91)90157-q. [DOI] [PubMed] [Google Scholar]
  34. Palczewski K., Buczylko J., Ohguro H., Annan R. S., Carr S. A., Crabb J. W., Kaplan M. W., Johnson R. S., Walsh K. A. Characterization of a truncated form of arrestin isolated from bovine rod outer segments. Protein Sci. 1994 Feb;3(2):314–324. doi: 10.1002/pro.5560030215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Palczewski K., Buczyłko J., Imami N. R., McDowell J. H., Hargrave P. A. Role of the carboxyl-terminal region of arrestin in binding to phosphorylated rhodopsin. J Biol Chem. 1991 Aug 15;266(23):15334–15339. [PubMed] [Google Scholar]
  36. Palczewski K., Hargrave P. A. Studies of ligand binding to arrestin. J Biol Chem. 1991 Mar 5;266(7):4201–4206. [PubMed] [Google Scholar]
  37. Palczewski K., McDowell J. H., Jakes S., Ingebritsen T. S., Hargrave P. A. Regulation of rhodopsin dephosphorylation by arrestin. J Biol Chem. 1989 Sep 25;264(27):15770–15773. [PubMed] [Google Scholar]
  38. Palczewski K., Pulvermüller A., Buczylko J., Gutmann C., Hofmann K. P. Binding of inositol phosphates to arrestin. FEBS Lett. 1991 Dec 16;295(1-3):195–199. doi: 10.1016/0014-5793(91)81416-6. [DOI] [PubMed] [Google Scholar]
  39. Palczewski K., Pulvermüller A., Buczyłko J., Hofmann K. P. Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin. J Biol Chem. 1991 Oct 5;266(28):18649–18654. [PubMed] [Google Scholar]
  40. Palczewski K., Riazance-Lawrence J. H., Johnson W. C., Jr Structural properties of arrestin studied by chemical modification and circular dichroism. Biochemistry. 1992 Apr 28;31(16):3902–3906. doi: 10.1021/bi00131a003. [DOI] [PubMed] [Google Scholar]
  41. Palczewski K., Rispoli G., Detwiler P. B. The influence of arrestin (48K protein) and rhodopsin kinase on visual transduction. Neuron. 1992 Jan;8(1):117–126. doi: 10.1016/0896-6273(92)90113-r. [DOI] [PubMed] [Google Scholar]
  42. Papac D. I., Oatis J. E., Jr, Crouch R. K., Knapp D. R. Mass spectrometric identification of phosphorylation sites in bleached bovine rhodopsin. Biochemistry. 1993 Jun 15;32(23):5930–5934. doi: 10.1021/bi00074a002. [DOI] [PubMed] [Google Scholar]
  43. Pippig S., Andexinger S., Daniel K., Puzicha M., Caron M. G., Lefkowitz R. J., Lohse M. J. Overexpression of beta-arrestin and beta-adrenergic receptor kinase augment desensitization of beta 2-adrenergic receptors. J Biol Chem. 1993 Feb 15;268(5):3201–3208. [PubMed] [Google Scholar]
  44. Pulvermüller A., Palczewski K., Hofmann K. P. Interaction between photoactivated rhodopsin and its kinase: stability and kinetics of complex formation. Biochemistry. 1993 Dec 28;32(51):14082–14088. doi: 10.1021/bi00214a002. [DOI] [PubMed] [Google Scholar]
  45. Qin N., Baehr W. Expression of mouse rod photoreceptor cGMP phosphodiesterase gamma subunit in bacteria. FEBS Lett. 1993 Apr 19;321(1):6–10. doi: 10.1016/0014-5793(93)80609-x. [DOI] [PubMed] [Google Scholar]
  46. Schleicher A., Kühn H., Hofmann K. P. Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II. Biochemistry. 1989 Feb 21;28(4):1770–1775. doi: 10.1021/bi00430a052. [DOI] [PubMed] [Google Scholar]
  47. Shinohara T., Dietzschold B., Craft C. M., Wistow G., Early J. J., Donoso L. A., Horwitz J., Tao R. Primary and secondary structure of bovine retinal S antigen (48-kDa protein). Proc Natl Acad Sci U S A. 1987 Oct;84(20):6975–6979. doi: 10.1073/pnas.84.20.6975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Smith D. P., Shieh B. H., Zuker C. S. Isolation and structure of an arrestin gene from Drosophila. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1003–1007. doi: 10.1073/pnas.87.3.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sterne-Marr R., Gurevich V. V., Goldsmith P., Bodine R. C., Sanders C., Donoso L. A., Benovic J. L. Polypeptide variants of beta-arrestin and arrestin3. J Biol Chem. 1993 Jul 25;268(21):15640–15648. [PubMed] [Google Scholar]
  50. Tsuda M., Kikuchi T., Yamaki K., Shinohara T. The mouse S-antigen gene. Comparison with human and Drosophila. Eur J Biochem. 1991 Aug 15;200(1):95–101. doi: 10.1111/j.1432-1033.1991.tb21053.x. [DOI] [PubMed] [Google Scholar]
  51. Tsuda M., Syed M., Bugra K., Whelan J. P., McGinnis J. F., Shinohara T. Structural analysis of mouse S-antigen. Gene. 1988 Dec 15;73(1):11–20. doi: 10.1016/0378-1119(88)90308-3. [DOI] [PubMed] [Google Scholar]
  52. Wacker W. B., Donoso L. A., Kalsow C. M., Yankeelov J. A., Jr, Organisciak D. T. Experimental allergic uveitis. Isolation, characterization, and localization of a soluble uveitopathogenic antigen from bovine retina. J Immunol. 1977 Dec;119(6):1949–1958. [PubMed] [Google Scholar]
  53. Wagner R., Ryba N., Uhl R. Rapid transducin deactivation in intact stacks of bovine rod outer segment disks as studied by light scattering techniques. Arrestin requires additional soluble proteins for rapid quenching of rhodopsin catalytic activity. FEBS Lett. 1988 Aug 1;235(1-2):103–108. doi: 10.1016/0014-5793(88)81242-0. [DOI] [PubMed] [Google Scholar]
  54. Weyand I., Kühn H. Subspecies of arrestin from bovine retina. Equal functional binding to photoexcited rhodopsin but various isoelectric focusing phenotypes in individuals. Eur J Biochem. 1990 Oct 24;193(2):459–467. doi: 10.1111/j.1432-1033.1990.tb19360.x. [DOI] [PubMed] [Google Scholar]
  55. Wilden U., Hall S. W., Kühn H. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1174–1178. doi: 10.1073/pnas.83.5.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Yamada T., Takeuchi Y., Komori N., Kobayashi H., Sakai Y., Hotta Y., Matsumoto H. A 49-kilodalton phosphoprotein in the Drosophila photoreceptor is an arrestin homolog. Science. 1990 Apr 27;248(4954):483–486. doi: 10.1126/science.2158671. [DOI] [PubMed] [Google Scholar]
  57. Yamaki K., Tsuda M., Kikuchi T., Chen K. H., Huang K. P., Shinohara T. Structural organization of the human S-antigen gene. cDNA, amino acid, intron, exon, promoter, in vitro transcription, retina, and pineal gland. J Biol Chem. 1990 Dec 5;265(34):20757–20762. [PubMed] [Google Scholar]
  58. Zuckerman R., Cheasty J. E. A 48 kDa protein arrests cGMP phosphodiesterase activation in retinal rod disk membranes. FEBS Lett. 1986 Oct 20;207(1):35–41. doi: 10.1016/0014-5793(86)80008-4. [DOI] [PubMed] [Google Scholar]
  59. Zuckerman R., Cheasty J. E. Sites of arrestin action during the quench phenomenon in retinal rods. FEBS Lett. 1988 Oct 10;238(2):379–384. doi: 10.1016/0014-5793(88)80516-7. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES