Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1994 Sep;3(9):1476–1484. doi: 10.1002/pro.5560030913

Cloning, characterization, and modeling of a monoclonal anti-human transferrin antibody that competes with the transferrin receptor.

M Orlandini 1, A Santucci 1, A Tramontano 1, P Neri 1, S Oliviero 1
PMCID: PMC2142950  PMID: 7530542

Abstract

In this report we describe the isolation and characterization of a monoclonal antibody against human serum transferrin (Tf) and the cloning and sequencing of its cDNA. The antibody competes with the transferrin receptor (TR) for binding to human Tf and is therefore expected to bind at or very close to a region of interaction between Tf and its receptor. From the deduced amino acid sequence, we constructed a 3-dimensional model of the variable domains of the antibody based on the canonical structure model for the hypervariable loops. The proposed structure of the antibody is a first step toward a more detailed characterization of the antibody-Tf complex and possibly toward a better understanding of the Tf interaction with its receptor. The model might prove useful in guiding site-directed mutagenesis studies, simplifying the experimental elucidation of the antibody structure, and in the use of automatic procedures to dock the interacting molecules as soon as structural information about the structure of the human Tf molecule will be available.

Full Text

The Full Text of this article is available as a PDF (4.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arunachalam B., Talwar G. P., Raghupathy R. A simplified cellular ELISA (CELISA) for the detection of antibodies reacting with cell-surface antigens. J Immunol Methods. 1990 Dec 31;135(1-2):181–189. doi: 10.1016/0022-1759(90)90271-v. [DOI] [PubMed] [Google Scholar]
  2. Bailey S., Evans R. W., Garratt R. C., Gorinsky B., Hasnain S., Horsburgh C., Jhoti H., Lindley P. F., Mydin A., Sarra R. Molecular structure of serum transferrin at 3.3-A resolution. Biochemistry. 1988 Jul 26;27(15):5804–5812. doi: 10.1021/bi00415a061. [DOI] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Bruccoleri R. E., Haber E., Novotný J. Structure of antibody hypervariable loops reproduced by a conformational search algorithm. Nature. 1988 Oct 6;335(6190):564–568. doi: 10.1038/335564a0. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Chothia C., Lesk A. M. Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol. 1987 Aug 20;196(4):901–917. doi: 10.1016/0022-2836(87)90412-8. [DOI] [PubMed] [Google Scholar]
  7. Chothia C., Lesk A. M., Levitt M., Amit A. G., Mariuzza R. A., Phillips S. E., Poljak R. J. The predicted structure of immunoglobulin D1.3 and its comparison with the crystal structure. Science. 1986 Aug 15;233(4765):755–758. doi: 10.1126/science.3090684. [DOI] [PubMed] [Google Scholar]
  8. Chothia C., Lesk A. M., Tramontano A., Levitt M., Smith-Gill S. J., Air G., Sheriff S., Padlan E. A., Davies D., Tulip W. R. Conformations of immunoglobulin hypervariable regions. Nature. 1989 Dec 21;342(6252):877–883. doi: 10.1038/342877a0. [DOI] [PubMed] [Google Scholar]
  9. Colman P. M., Laver W. G., Varghese J. N., Baker A. T., Tulloch P. A., Air G. M., Webster R. G. Three-dimensional structure of a complex of antibody with influenza virus neuraminidase. 1987 Mar 26-Apr 1Nature. 326(6111):358–363. doi: 10.1038/326358a0. [DOI] [PubMed] [Google Scholar]
  10. Davies D. R., Padlan E. A., Sheriff S. Antibody-antigen complexes. Annu Rev Biochem. 1990;59:439–473. doi: 10.1146/annurev.bi.59.070190.002255. [DOI] [PubMed] [Google Scholar]
  11. Denstman S., Hromchak R., Guan X. P., Bloch A. Identification of transferrin as a progression factor for ML-1 human myeloblastic leukemia cell differentiation. J Biol Chem. 1991 Aug 15;266(23):14873–14876. [PubMed] [Google Scholar]
  12. Fleming J. O., Pen L. B. Measurement of the concentration of murine IgG monoclonal antibody in hybridoma supernatants and ascites in absolute units by sensitive and reliable enzyme-linked immunosorbent assays (ELISA). J Immunol Methods. 1988 May 25;110(1):11–18. doi: 10.1016/0022-1759(88)90077-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Franco A., Paroli M., Testa U., Benvenuto R., Peschle C., Balsano F., Barnaba V. Transferrin receptor mediates uptake and presentation of hepatitis B envelope antigen by T lymphocytes. J Exp Med. 1992 May 1;175(5):1195–1205. doi: 10.1084/jem.175.5.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Helmer-Citterich M., Tramontano A. PUZZLE: a new method for automated protein docking based on surface shape complementarity. J Mol Biol. 1994 Jan 21;235(3):1021–1031. doi: 10.1006/jmbi.1994.1054. [DOI] [PubMed] [Google Scholar]
  15. Huebers H. A., Finch C. A. The physiology of transferrin and transferrin receptors. Physiol Rev. 1987 Apr;67(2):520–582. doi: 10.1152/physrev.1987.67.2.520. [DOI] [PubMed] [Google Scholar]
  16. Keyna U., Nüsslein I., Rohwer P., Kalden J. R., Manger B. The role of the transferrin receptor for the activation of human lymphocytes. Cell Immunol. 1991 Feb;132(2):411–422. doi: 10.1016/0008-8749(91)90038-d. [DOI] [PubMed] [Google Scholar]
  17. Klausner R. D., Ashwell G., van Renswoude J., Harford J. B., Bridges K. R. Binding of apotransferrin to K562 cells: explanation of the transferrin cycle. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2263–2266. doi: 10.1073/pnas.80.8.2263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MacGillivray R. T., Mendez E., Shewale J. G., Sinha S. K., Lineback-Zins J., Brew K. The primary structure of human serum transferrin. The structures of seven cyanogen bromide fragments and the assembly of the complete structure. J Biol Chem. 1983 Mar 25;258(6):3543–3553. [PubMed] [Google Scholar]
  19. Mariani M., Bracci L., Presentini R., Nucci D., Neri P., Antoni G. Immunogenicity of a free synthetic peptide: carrier-conjugation enhances antibody affinity for the native protein. Mol Immunol. 1987 Mar;24(3):297–303. doi: 10.1016/0161-5890(87)90148-9. [DOI] [PubMed] [Google Scholar]
  20. Mason A. B., Woodworth R. C. Monoclonal antibodies to the amino- and carboxyl-terminal domains of human transferrin. Hybridoma. 1991 Oct;10(5):611–623. doi: 10.1089/hyb.1991.10.611. [DOI] [PubMed] [Google Scholar]
  21. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  22. Orlandi R., Güssow D. H., Jones P. T., Winter G. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc Natl Acad Sci U S A. 1989 May;86(10):3833–3837. doi: 10.1073/pnas.86.10.3833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Padlan E. A., Silverton E. W., Sheriff S., Cohen G. H., Smith-Gill S. J., Davies D. R. Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5938–5942. doi: 10.1073/pnas.86.15.5938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pierpaoli W., Dall'Ara A., Yi C. X., Neri P., Santucci A., Choay J. Iron carrier proteins facilitate engraftment of allogeneic bone marrow and enduring hemopoietic chimerism in the lethally irradiated host. Cell Immunol. 1991 Apr 15;134(1):225–234. doi: 10.1016/0008-8749(91)90345-c. [DOI] [PubMed] [Google Scholar]
  25. Satow Y., Cohen G. H., Padlan E. A., Davies D. R. Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 A. J Mol Biol. 1986 Aug 20;190(4):593–604. doi: 10.1016/0022-2836(86)90245-7. [DOI] [PubMed] [Google Scholar]
  26. Sirbasku D. A., Pakala R., Sato H., Eby J. E. Thyroid hormone dependent pituitary tumor cell growth in serum-free chemically defined culture. A new regulatory role for apotransferrin. Biochemistry. 1991 Jul 30;30(30):7466–7477. doi: 10.1021/bi00244a015. [DOI] [PubMed] [Google Scholar]
  27. Sithigorngul P., Stretton A. O., Cowden C. A versatile dot-ELISA method with femtomole sensitivity for detecting small peptides. J Immunol Methods. 1991 Jul 26;141(1):23–32. doi: 10.1016/0022-1759(91)90206-u. [DOI] [PubMed] [Google Scholar]
  28. Tramontano A., Lesk A. M. Common features of the conformations of antigen-binding loops in immunoglobulins and application to modeling loop conformations. Proteins. 1992 Jul;13(3):231–245. doi: 10.1002/prot.340130306. [DOI] [PubMed] [Google Scholar]
  29. Williams J. The formation of iron-binding fragments of hen ovotransferrin by limited proteolysis. Biochem J. 1974 Sep;141(3):745–752. doi: 10.1042/bj1410745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yang F., Lum J. B., McGill J. R., Moore C. M., Naylor S. L., van Bragt P. H., Baldwin W. D., Bowman B. H. Human transferrin: cDNA characterization and chromosomal localization. Proc Natl Acad Sci U S A. 1984 May;81(9):2752–2756. doi: 10.1073/pnas.81.9.2752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. de Jong G., van Dijk J. P., van Eijk H. G. The biology of transferrin. Clin Chim Acta. 1990 Sep;190(1-2):1–46. doi: 10.1016/0009-8981(90)90278-z. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES