Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Nov;164(2):611–617. doi: 10.1128/jb.164.2.611-617.1985

Isolation and characterization of vanadate-resistant mutants of Saccharomyces cerevisiae.

G R Willsky, J O Leung, P V Offermann Jr, E K Plotnick, S F Dosch
PMCID: PMC214296  PMID: 3902790

Abstract

Cellular vanadium metabolism was studied in Saccharomyces cerevisiae by isolating and characterizing vanadate [VO4(3-), V(V)]-resistant mutants. Vanadate growth inhibition was reversed by the removal of the vanadate from the medium, and vanadate resistance was found to be a recessive trait. Vanadate-resistant mutants isolated from glucose-grown cells were divided into five complementation classes containing more than one mutant. Among the vanadate-resistant mutants isolated in maltose medium, the majority of mutants were found in only two complementation groups. Three of the classes of vanadate-resistant mutants were resistant to 2.5 mM vanadate but sensitive to 5.0 mM vanadate in liquid media. Two classes of vanadate-resistant mutants were resistant to growth in media containing up to 5.0 mM vanadate. Electron spin resonance studies showed that representative strains of the vanadate-resistant complementation classes contained more cell-associated vanadyl [VO2+, V(IV)] than the parental strains. 51 Vanadium nuclear magnetic resonance studies showed that one of the vanadate resonances previously associated with cell toxicity (G. R. Willsky, D. A. White, and B. C. McCabe, J. Biol. Chem. 259:13273-132812, 1984) did not accumulate in the resistant strains compared with the sensitive strain. The amount of vanadate remaining in the media after growth was larger for the sensitive strain than for the vanadate-resistant strains. All of the strains were able to accumulate phosphate, vanadate, and vanadyl.

Full text

PDF
611

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borst-Pauwels G. W. Ion transport in yeast. Biochim Biophys Acta. 1981 Dec;650(2-3):88–127. doi: 10.1016/0304-4157(81)90002-2. [DOI] [PubMed] [Google Scholar]
  2. Bowman B. J., Allen K. E., Slayman C. W. Vanadate-resistant mutants of Neurospora crassa are deficient in a high-affinity phosphate transport system. J Bacteriol. 1983 Jan;153(1):292–296. doi: 10.1128/jb.153.1.292-296.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bowman B. J., Slayman C. W. The effects of vanadate on the plasma membrane ATPase of Neurospora crassa. J Biol Chem. 1979 Apr 25;254(8):2928–2934. [PubMed] [Google Scholar]
  4. Bowman B. J. Vanadate uptake in Neurospora crassa occurs via phosphate transport system II. J Bacteriol. 1983 Jan;153(1):286–291. doi: 10.1128/jb.153.1.286-291.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boyd D. W., Kustin K. Vanadium: a versatile biochemical effector with an elusive biological function. Adv Inorg Biochem. 1984;6:311–365. [PubMed] [Google Scholar]
  6. Brandriss M. C., Magasanik B. Genetics and physiology of proline utilization in Saccharomyces cerevisiae: enzyme induction by proline. J Bacteriol. 1979 Nov;140(2):498–503. doi: 10.1128/jb.140.2.498-503.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Briskin D. P., Thornley W. R., Poole R. J. Vanadate-dependent NADH oxidation in microsomal membranes of sugar beet. Arch Biochem Biophys. 1985 Jan;236(1):228–237. doi: 10.1016/0003-9861(85)90622-8. [DOI] [PubMed] [Google Scholar]
  8. Cantley L. C., Jr, Cantley L. G., Josephson L. A characterization of vanadate interactions with the (Na,K)-ATPase. Mechanistic and regulatory implications. J Biol Chem. 1978 Oct 25;253(20):7361–7368. [PubMed] [Google Scholar]
  9. Cantley L. C., Jr, Josephson L., Warner R., Yanagisawa M., Lechene C., Guidotti G. Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle. J Biol Chem. 1977 Nov 10;252(21):7421–7423. [PubMed] [Google Scholar]
  10. Cantley L. C., Jr, Resh M. D., Guidotti G. Vanadate inhibits the red cell (Na+, K+) ATPase from the cytoplasmic side. Nature. 1978 Apr 6;272(5653):552–554. doi: 10.1038/272552a0. [DOI] [PubMed] [Google Scholar]
  11. Degani H., Gochin M., Karlish S. J., Shechter Y. Electron paramagnetic resonance studies and insulin-like effects of vanadium in rat adipocytes. Biochemistry. 1981 Sep 29;20(20):5795–5799. doi: 10.1021/bi00523a023. [DOI] [PubMed] [Google Scholar]
  12. Dubyak G. R., Kleinzeller A. The insulin-mimetic effects of vanadate in isolated rat adipocytes. Dissociation from effects of vanadate as a (Na+-K+)ATPase inhibitor. J Biol Chem. 1980 Jun 10;255(11):5306–5312. [PubMed] [Google Scholar]
  13. Federoff H. J., Eccleshall T. R., Marmur J. Carbon catabolite repression of maltase synthesis in Saccharomyces carlsbergensis. J Bacteriol. 1983 Oct;156(1):301–307. doi: 10.1128/jb.156.1.301-307.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goffeau A., Slayman C. W. The proton-translocating ATPase of the fungal plasma membrane. Biochim Biophys Acta. 1981 Dec 30;639(3-4):197–223. doi: 10.1016/0304-4173(81)90010-0. [DOI] [PubMed] [Google Scholar]
  15. Lindquist R. N., Lynn J. L., Jr, Lienhard G. E. Possible transition-state analogs for ribonuclease. The complexes of uridine with oxovanadium(IV) ion and vanadium(V) ion. J Am Chem Soc. 1973 Dec 26;95(26):8762–8768. doi: 10.1021/ja00807a043. [DOI] [PubMed] [Google Scholar]
  16. Macara I. G., Kustin K., Cantley L. C., Jr Glutathione reduces cytoplasmic vanadate. Mechanism and physiological implications. Biochim Biophys Acta. 1980 Apr 17;629(1):95–106. doi: 10.1016/0304-4165(80)90268-8. [DOI] [PubMed] [Google Scholar]
  17. North P., Post R. L. Inhibition of (Na,K)-ATPase by tetravalent vanadium. J Biol Chem. 1984 Apr 25;259(8):4971–4978. [PubMed] [Google Scholar]
  18. Schwarz K., Milne D. B. Growth effects of vanadium in the rat. Science. 1971 Oct 22;174(4007):426–428. doi: 10.1126/science.174.4007.426. [DOI] [PubMed] [Google Scholar]
  19. Seaston A., Inkson C., Eddy A. A. The absorption of protons with specific amino acids and carbohydrates by yeast. Biochem J. 1973 Aug;134(4):1031–1043. doi: 10.1042/bj1341031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Simons T. J. Vanadate--a new tool for biologists. Nature. 1979 Oct 4;281(5730):337–338. doi: 10.1038/281337a0. [DOI] [PubMed] [Google Scholar]
  21. Soman G., Chang Y. C., Graves D. J. Effect of oxyanions of the early transition metals on rabbit skeletal muscle phosphorylase. Biochemistry. 1983 Oct 11;22(21):4994–5000. doi: 10.1021/bi00290a018. [DOI] [PubMed] [Google Scholar]
  22. Sweadner K. J., Goldin S. M. Active transport of sodium and potassium ions: mechanism, function, and regulation. N Engl J Med. 1980 Apr 3;302(14):777–783. doi: 10.1056/NEJM198004033021404. [DOI] [PubMed] [Google Scholar]
  23. Willsky G. R., Malamy M. H. Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J Bacteriol. 1980 Oct;144(1):356–365. doi: 10.1128/jb.144.1.356-365.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Willsky G. R., White D. A., McCabe B. C. Metabolism of added orthovanadate to vanadyl and high-molecular-weight vanadates by Saccharomyces cerevisiae. J Biol Chem. 1984 Nov 10;259(21):13273–13281. [PubMed] [Google Scholar]
  25. den Hollander J. A., Ugurbil K., Brown T. R., Shulman R. G. Phosphorus-31 nuclear magnetic resonance studies of the effect of oxygen upon glycolysis in yeast. Biochemistry. 1981 Sep 29;20(20):5871–5880. doi: 10.1021/bi00523a034. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES