Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Oct;4(10):2063–2072. doi: 10.1002/pro.5560041011

Design and structural analysis of an engineered thermostable chicken lysozyme.

P Shih 1, J F Kirsch 1
PMCID: PMC2142986  PMID: 8535242

Abstract

A hyperstable (hs) variant of chicken egg-white lysozyme with enhanced thermal (delta Tm approximately +10.5 degrees C) and chemical (delta Cm for guanidine hydrochloride denaturation = +1.3 M) stabilities relative to wild-type (WT) was constructed by combining several individual stabilizing substitutions. The free energy difference between the native and denatured states of the hs variant is 3.1 (GdnHCl, 25 degrees C) to 4.0 (differential scanning calorimetry, 74 degrees C) kcal mol-1 greater than that of WT. The specific activity of the hs variant is 2.5-fold greater than that of WT. The choice of mutations came from diverse sources: (1) The I55L/S91T core construct with delta Tm = 3.3 degrees C from WT was available from the accompanying study (Shih P, Holland DR, Kirsch JF, 1995, Protein Sci 4:2050-2062). (2) The A31V mutation was suggested by the better atomic packing in the human lysozyme structure where the Ala 31 equivalent is Leu. (3) The H15L and R114H substitutions were selected on the basis of sequence comparisons with pheasant lysozymes that are more stable than the chicken enzyme. (4) The D101S variant was identified from a screen of mutants previously prepared in this laboratory. The effects of the individual mutations on stability are cumulative and nearly additive.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. E., Hurley J. H., Nicholson H., Baase W. A., Matthews B. W. Hydrophobic core repacking and aromatic-aromatic interaction in the thermostable mutant of T4 lysozyme Ser 117-->Phe. Protein Sci. 1993 Aug;2(8):1285–1290. doi: 10.1002/pro.5560020811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Araki T., Kuramoto M., Torikata T. The amino acid sequence of Lady Amherst's pheasant (Chrysolophus amherstiae) and golden pheasant (Chrysolophus pictus) egg-white lysozymes. Agric Biol Chem. 1990 Sep;54(9):2299–2308. [PubMed] [Google Scholar]
  3. Araki T., Kuramoto M., Torikata T. The amino acid sequence of copper pheasant lysozyme. Biosci Biotechnol Biochem. 1994 Apr;58(4):794–795. doi: 10.1271/bbb.58.794. [DOI] [PubMed] [Google Scholar]
  4. Armstrong K. M., Fairman R., Baldwin R. L. The (i, i + 4) Phe-His interaction studied in an alanine-based alpha-helix. J Mol Biol. 1993 Mar 5;230(1):284–291. doi: 10.1006/jmbi.1993.1142. [DOI] [PubMed] [Google Scholar]
  5. Artymiuk P. J., Blake C. C. Refinement of human lysozyme at 1.5 A resolution analysis of non-bonded and hydrogen-bond interactions. J Mol Biol. 1981 Nov 15;152(4):737–762. doi: 10.1016/0022-2836(81)90125-x. [DOI] [PubMed] [Google Scholar]
  6. Bashford D., Karplus M. pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry. 1990 Nov 6;29(44):10219–10225. doi: 10.1021/bi00496a010. [DOI] [PubMed] [Google Scholar]
  7. Becktel W. J., Schellman J. A. Protein stability curves. Biopolymers. 1987 Nov;26(11):1859–1877. doi: 10.1002/bip.360261104. [DOI] [PubMed] [Google Scholar]
  8. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  9. Chothia C. Structural invariants in protein folding. Nature. 1975 Mar 27;254(5498):304–308. doi: 10.1038/254304a0. [DOI] [PubMed] [Google Scholar]
  10. Eijsink V. G., Dijkstra B. W., Vriend G., van der Zee J. R., Veltman O. R., van der Vinne B., van den Burg B., Kempe S., Venema G. The effect of cavity-filling mutations on the thermostability of Bacillus stearothermophilus neutral protease. Protein Eng. 1992 Jul;5(5):421–426. doi: 10.1093/protein/5.5.421. [DOI] [PubMed] [Google Scholar]
  11. Formoso C., Forster L. S. Tryptophan fluorescence lifetimes in lysozyme. J Biol Chem. 1975 May 25;250(10):3738–3745. [PubMed] [Google Scholar]
  12. Harata K., Muraki M., Jigami Y. Role of Arg115 in the catalytic action of human lysozyme. X-ray structure of His115 and Glu115 mutants. J Mol Biol. 1993 Oct 5;233(3):524–535. doi: 10.1006/jmbi.1993.1529. [DOI] [PubMed] [Google Scholar]
  13. Harata K. X-ray structure of monoclinic turkey egg lysozyme at 1.3 A resolution. Acta Crystallogr D Biol Crystallogr. 1993 Sep 1;49(Pt 5):497–504. doi: 10.1107/S0907444993005542. [DOI] [PubMed] [Google Scholar]
  14. Honig B., Yang A. S. Free energy balance in protein folding. Adv Protein Chem. 1995;46:27–58. doi: 10.1016/s0065-3233(08)60331-9. [DOI] [PubMed] [Google Scholar]
  15. Hooke S. D., Radford S. E., Dobson C. M. The refolding of human lysozyme: a comparison with the structurally homologous hen lysozyme. Biochemistry. 1994 May 17;33(19):5867–5876. doi: 10.1021/bi00185a026. [DOI] [PubMed] [Google Scholar]
  16. Jollès J., Ibrahimi I. M., Prager E. M., Schoentgen F., Jollès P., Wilson A. C. Amino acid sequence of pheasant lysozyme. Evolutionary change affecting processing of prelysozyme. Biochemistry. 1979 Jun 26;18(13):2744–2752. doi: 10.1021/bi00580a009. [DOI] [PubMed] [Google Scholar]
  17. Jollès P., Jollès J. What's new in lysozyme research? Always a model system, today as yesterday. Mol Cell Biochem. 1984 Sep;63(2):165–189. doi: 10.1007/BF00285225. [DOI] [PubMed] [Google Scholar]
  18. Kam-Morgan L. N., Smith-Gill S. J., Taylor M. G., Zhang L., Wilson A. C., Kirsch J. F. High-resolution mapping of the HyHEL-10 epitope of chicken lysozyme by site-directed mutagenesis. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3958–3962. doi: 10.1073/pnas.90.9.3958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Karpusas M., Baase W. A., Matsumura M., Matthews B. W. Hydrophobic packing in T4 lysozyme probed by cavity-filling mutants. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8237–8241. doi: 10.1073/pnas.86.21.8237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kumagai I., Maenaka K., Sunada F., Takeda S., Miura K. Effects of subsite alterations on substrate-binding mode in the active site of hen egg-white lysozyme. Eur J Biochem. 1993 Feb 15;212(1):151–156. doi: 10.1111/j.1432-1033.1993.tb17645.x. [DOI] [PubMed] [Google Scholar]
  21. Kuroki R., Taniyama Y., Seko C., Nakamura H., Kikuchi M., Ikehara M. Design and creation of a Ca2+ binding site in human lysozyme to enhance structural stability. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6903–6907. doi: 10.1073/pnas.86.18.6903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Leontiev V. V., Uversky V. N., Permyakov E. A., Murzin A. G. Introduction of Ca(2+)-binding amino-acid sequence into the T4 lysozyme. Biochim Biophys Acta. 1993 Mar 5;1162(1-2):84–88. doi: 10.1016/0167-4838(93)90131-a. [DOI] [PubMed] [Google Scholar]
  23. Matthews B. W. Studies on protein stability with T4 lysozyme. Adv Protein Chem. 1995;46:249–278. doi: 10.1016/s0065-3233(08)60337-x. [DOI] [PubMed] [Google Scholar]
  24. McKenzie H. A., White F. H., Jr Lysozyme and alpha-lactalbumin: structure, function, and interrelationships. Adv Protein Chem. 1991;41:173–315. doi: 10.1016/s0065-3233(08)60198-9. [DOI] [PubMed] [Google Scholar]
  25. Meiering E. M., Serrano L., Fersht A. R. Effect of active site residues in barnase on activity and stability. J Mol Biol. 1992 Jun 5;225(3):585–589. doi: 10.1016/0022-2836(92)90387-y. [DOI] [PubMed] [Google Scholar]
  26. Menéndez-Arias L., Argos P. Engineering protein thermal stability. Sequence statistics point to residue substitutions in alpha-helices. J Mol Biol. 1989 Mar 20;206(2):397–406. doi: 10.1016/0022-2836(89)90488-9. [DOI] [PubMed] [Google Scholar]
  27. Miranker A., Radford S. E., Karplus M., Dobson C. M. Demonstration by NMR of folding domains in lysozyme. Nature. 1991 Feb 14;349(6310):633–636. doi: 10.1038/349633a0. [DOI] [PubMed] [Google Scholar]
  28. Nicholson H., Becktel W. J., Matthews B. W. Enhanced protein thermostability from designed mutations that interact with alpha-helix dipoles. Nature. 1988 Dec 15;336(6200):651–656. doi: 10.1038/336651a0. [DOI] [PubMed] [Google Scholar]
  29. O'Reilly J. M., Karasz F. E. Heat of denaturation of lysozyme. Biopolymers. 1970;9(12):1429–1435. doi: 10.1002/bip.1970.360091205. [DOI] [PubMed] [Google Scholar]
  30. Pakula A. A., Sauer R. T. Reverse hydrophobic effects relieved by amino-acid substitutions at a protein surface. Nature. 1990 Mar 22;344(6264):363–364. doi: 10.1038/344363a0. [DOI] [PubMed] [Google Scholar]
  31. Pfeil W., Privalov P. L. Thermodynamic investigations of proteins. I. Standard functions for proteins with lysozyme as an example. Biophys Chem. 1976 Jan;4(1):23–32. doi: 10.1016/0301-4622(76)80003-8. [DOI] [PubMed] [Google Scholar]
  32. Pjura P., Matthews B. W. Structures of randomly generated mutants of T4 lysozyme show that protein stability can be enhanced by relaxation of strain and by improved hydrogen bonding via bound solvent. Protein Sci. 1993 Dec;2(12):2226–2232. doi: 10.1002/pro.5560021222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Prager E. M., Wilson A. C. The dependence of immunological cross-reactivity upon sequence resemblance among lysozymes. I. Micro-complement fixation studies. J Biol Chem. 1971 Oct 10;246(19):5978–5989. [PubMed] [Google Scholar]
  34. Radford S. E., Dobson C. M., Evans P. A. The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature. 1992 Jul 23;358(6384):302–307. doi: 10.1038/358302a0. [DOI] [PubMed] [Google Scholar]
  35. Richards F. M., Lim W. A. An analysis of packing in the protein folding problem. Q Rev Biophys. 1993 Nov;26(4):423–498. doi: 10.1017/s0033583500002845. [DOI] [PubMed] [Google Scholar]
  36. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  37. Shih P., Holland D. R., Kirsch J. F. Thermal stability determinants of chicken egg-white lysozyme core mutants: hydrophobicity, packing volume, and conserved buried water molecules. Protein Sci. 1995 Oct;4(10):2050–2062. doi: 10.1002/pro.5560041010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shih P., Malcolm B. A., Rosenberg S., Kirsch J. F., Wilson A. C. Reconstruction and testing of ancestral proteins. Methods Enzymol. 1993;224:576–590. doi: 10.1016/0076-6879(93)24043-t. [DOI] [PubMed] [Google Scholar]
  39. Takahashi T., Nakamura H., Wada A. Electrostatic forces in two lysozymes: calculations and measurements of histidine pKa values. Biopolymers. 1992 Aug;32(8):897–909. doi: 10.1002/bip.360320802. [DOI] [PubMed] [Google Scholar]
  40. Tanaka A., Flanagan J., Sturtevant J. M. Thermal unfolding of staphylococcal nuclease and several mutant forms thereof studied by differential scanning calorimetry. Protein Sci. 1993 Apr;2(4):567–576. doi: 10.1002/pro.5560020408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Varley P. G., Pain R. H. Relation between stability, dynamics and enzyme activity in 3-phosphoglycerate kinases from yeast and Thermus thermophilus. J Mol Biol. 1991 Jul 20;220(2):531–538. doi: 10.1016/0022-2836(91)90028-5. [DOI] [PubMed] [Google Scholar]
  42. Wells J. A. Additivity of mutational effects in proteins. Biochemistry. 1990 Sep 18;29(37):8509–8517. doi: 10.1021/bi00489a001. [DOI] [PubMed] [Google Scholar]
  43. Williams R. W., Chang A., Juretić D., Loughran S. Secondary structure predictions and medium range interactions. Biochim Biophys Acta. 1987 Nov 26;916(2):200–204. doi: 10.1016/0167-4838(87)90109-9. [DOI] [PubMed] [Google Scholar]
  44. Wilson K. P., Malcolm B. A., Matthews B. W. Structural and thermodynamic analysis of compensating mutations within the core of chicken egg white lysozyme. J Biol Chem. 1992 May 25;267(15):10842–10849. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES