Abstract
We report here the first three-dimensional structure of a mammalian thioltransferase as determined by single crystal X-ray crystallography at 2.2 A resolution. The protein is known for its thiol-redox properties and dehydroascorbate reductase activity. Recombinant pig liver thioltransferase expressed in Escherichia coli was crystallized in its oxidized form by vapor diffusion technique. The structure was determined by multiple isomorphous replacement method using four heavy-atom derivatives. The protein folds into an alpha/beta structure with a four-stranded mixed beta-sheet in the core, flanked on either side by helices. The fold is similar to that found in other thiol-redox proteins, viz. E. coli thioredoxin and bacteriophage T4 glutaredoxin, and thus seems to be conserved in these functionally related proteins. The active site disulfide (Cys 22-Cys 25) is located on a protrusion on the molecular surface. Cys 22, which is known to have an abnormally low pKa of 3.8, is accessible from the exterior of the molecule. Pro 70, which is in close proximity to the disulfide bridge, assumes a conserved cis-peptide configuration. Mutational data available on the protein are in agreement with the three-dimensional structure.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Askelöf P., Axelsson K., Eriksson S., Mannervik B. Mechanism of action of enzymes catalyzing thiol-disulfide interchange. Thioltransferases rather than transhydrogenases. FEBS Lett. 1974 Jan 15;38(3):263–267. doi: 10.1016/0014-5793(74)80068-2. [DOI] [PubMed] [Google Scholar]
- Dyson H. J., Gippert G. P., Case D. A., Holmgren A., Wright P. E. Three-dimensional solution structure of the reduced form of Escherichia coli thioredoxin determined by nuclear magnetic resonance spectroscopy. Biochemistry. 1990 May 1;29(17):4129–4136. doi: 10.1021/bi00469a016. [DOI] [PubMed] [Google Scholar]
- Eklund H., Ingelman M., Söderberg B. O., Uhlin T., Nordlund P., Nikkola M., Sonnerstam U., Joelson T., Petratos K. Structure of oxidized bacteriophage T4 glutaredoxin (thioredoxin). Refinement of native and mutant proteins. J Mol Biol. 1992 Nov 20;228(2):596–618. doi: 10.1016/0022-2836(92)90844-a. [DOI] [PubMed] [Google Scholar]
- Forman-Kay J. D., Clore G. M., Wingfield P. T., Gronenborn A. M. High-resolution three-dimensional structure of reduced recombinant human thioredoxin in solution. Biochemistry. 1991 Mar 12;30(10):2685–2698. doi: 10.1021/bi00224a017. [DOI] [PubMed] [Google Scholar]
- Gan Z. R., Wells W. W. Identification and reactivity of the catalytic site of pig liver thioltransferase. J Biol Chem. 1987 May 15;262(14):6704–6707. [PubMed] [Google Scholar]
- Gan Z. R., Wells W. W. Immunological characterization of thioltransferase from pig liver. J Biol Chem. 1988 Jun 25;263(18):9050–9054. [PubMed] [Google Scholar]
- Gan Z. R., Wells W. W. Preparation of homogeneous pig liver thioltransferase by a thiol:disulfide mediated pI shift. Anal Biochem. 1987 Apr;162(1):265–273. doi: 10.1016/0003-2697(87)90036-4. [DOI] [PubMed] [Google Scholar]
- Gan Z. R., Wells W. W. Purification and properties of thioltransferase. J Biol Chem. 1986 Jan 25;261(3):996–1001. [PubMed] [Google Scholar]
- Gan Z. R., Wells W. W. The primary structure of pig liver thioltransferase. J Biol Chem. 1987 May 15;262(14):6699–6703. [PubMed] [Google Scholar]
- Hatakeyama M., Tanimoto Y., Mizoguchi T. Purification and some properties of bovine liver cytosol thioltransferase. J Biochem. 1984 Jun;95(6):1811–1818. doi: 10.1093/oxfordjournals.jbchem.a134794. [DOI] [PubMed] [Google Scholar]
- Hol W. G. The role of the alpha-helix dipole in protein function and structure. Prog Biophys Mol Biol. 1985;45(3):149–195. doi: 10.1016/0079-6107(85)90001-x. [DOI] [PubMed] [Google Scholar]
- Holmgren A. Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2275–2279. doi: 10.1073/pnas.73.7.2275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmgren A., Söderberg B. O., Eklund H., Brändén C. I. Three-dimensional structure of Escherichia coli thioredoxin-S2 to 2.8 A resolution. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2305–2309. doi: 10.1073/pnas.72.6.2305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard A. J., Nielsen C., Xuong N. H. Software for a diffractometer with multiwire area detector. Methods Enzymol. 1985;114:452–472. doi: 10.1016/0076-6879(85)14030-9. [DOI] [PubMed] [Google Scholar]
- Ji X., Zhang P., Armstrong R. N., Gilliland G. L. The three-dimensional structure of a glutathione S-transferase from the mu gene class. Structural analysis of the binary complex of isoenzyme 3-3 and glutathione at 2.2-A resolution. Biochemistry. 1992 Oct 27;31(42):10169–10184. doi: 10.1021/bi00157a004. [DOI] [PubMed] [Google Scholar]
- Joelson T., Sjöberg B. M., Eklund H. Modifications of the active center of T4 thioredoxin by site-directed mutagenesis. J Biol Chem. 1990 Feb 25;265(6):3183–3188. [PubMed] [Google Scholar]
- Katti S. K., LeMaster D. M., Eklund H. Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol. 1990 Mar 5;212(1):167–184. doi: 10.1016/0022-2836(90)90313-B. [DOI] [PubMed] [Google Scholar]
- Kelley R. F., Richards F. M. Replacement of proline-76 with alanine eliminates the slowest kinetic phase in thioredoxin folding. Biochemistry. 1987 Oct 20;26(21):6765–6774. doi: 10.1021/bi00395a028. [DOI] [PubMed] [Google Scholar]
- Krause G., Lundström J., Barea J. L., Pueyo de la Cuesta C., Holmgren A. Mimicking the active site of protein disulfide-isomerase by substitution of proline 34 in Escherichia coli thioredoxin. J Biol Chem. 1991 May 25;266(15):9494–9500. [PubMed] [Google Scholar]
- Larson K., Eriksson V., Mannervik B. Thioltransferase from human placenta. Methods Enzymol. 1985;113:520–524. doi: 10.1016/s0076-6879(85)13070-3. [DOI] [PubMed] [Google Scholar]
- Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
- Nagai S., Black S. A thiol-disulfide transhydrogenase from yeast. J Biol Chem. 1968 Apr 25;243(8):1942–1947. [PubMed] [Google Scholar]
- Papov V. V., Gravina S. A., Mieyal J. J., Biemann K. The primary structure and properties of thioltransferase (glutaredoxin) from human red blood cells. Protein Sci. 1994 Mar;3(3):428–434. doi: 10.1002/pro.5560030307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RACKER E. Glutathione-homocystine transhydrogenase. J Biol Chem. 1955 Dec;217(2):867–874. [PubMed] [Google Scholar]
- Reinemer P., Dirr H. W., Ladenstein R., Schäffer J., Gallay O., Huber R. The three-dimensional structure of class pi glutathione S-transferase in complex with glutathione sulfonate at 2.3 A resolution. EMBO J. 1991 Aug;10(8):1997–2005. doi: 10.1002/j.1460-2075.1991.tb07729.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sodano P., Xia T. H., Bushweller J. H., Björnberg O., Holmgren A., Billeter M., Wüthrich K. Sequence-specific 1H n.m.r. assignments and determination of the three-dimensional structure of reduced Escherichia coli glutaredoxin. J Mol Biol. 1991 Oct 20;221(4):1311–1324. doi: 10.1016/0022-2836(91)90935-y. [DOI] [PubMed] [Google Scholar]
- Söderberg B. O., Sjöberg B. M., Sonnerstam U., Brändén C. I. Three-dimensional structure of thioredoxin induced by bacteriophage T4. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5827–5830. doi: 10.1073/pnas.75.12.5827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wells W. W., Xu D. P., Washburn M. P. Glutathione: dehydroascorbate oxidoreductases. Methods Enzymol. 1995;252:30–38. doi: 10.1016/0076-6879(95)52006-6. [DOI] [PubMed] [Google Scholar]
- Wells W. W., Xu D. P., Yang Y. F., Rocque P. A. Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J Biol Chem. 1990 Sep 15;265(26):15361–15364. [PubMed] [Google Scholar]
- Wells W. W., Yang Y., Deits T. L., Gan Z. R. Thioltransferases. Adv Enzymol Relat Areas Mol Biol. 1993;66:149–201. doi: 10.1002/9780470123126.ch4. [DOI] [PubMed] [Google Scholar]
- Xia T. H., Bushweller J. H., Sodano P., Billeter M., Björnberg O., Holmgren A., Wüthrich K. NMR structure of oxidized Escherichia coli glutaredoxin: comparison with reduced E. coli glutaredoxin and functionally related proteins. Protein Sci. 1992 Mar;1(3):310–321. doi: 10.1002/pro.5560010302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang Y. F., Gan Z. R., Wells W. W. Cloning and sequencing the cDNA encoding pig liver thioltransferase. Gene. 1989 Nov 30;83(2):339–346. doi: 10.1016/0378-1119(89)90120-0. [DOI] [PubMed] [Google Scholar]
- Yang Y. F., Wells W. W. Catalytic mechanism of thioltransferase. J Biol Chem. 1991 Jul 5;266(19):12766–12771. [PubMed] [Google Scholar]
- Yang Y. F., Wells W. W. High-level expression of pig liver thioltransferase (glutaredoxin) in Escherichia coli. J Biol Chem. 1990 Jan 5;265(1):589–593. [PubMed] [Google Scholar]
- Yang Y. F., Wells W. W. Identification and characterization of the functional amino acids at the active center of pig liver thioltransferase by site-directed mutagenesis. J Biol Chem. 1991 Jul 5;266(19):12759–12765. [PubMed] [Google Scholar]