Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Nov;4(11):2375–2382. doi: 10.1002/pro.5560041116

Role of the N-terminal region of the skeletal muscle myosin light chain kinase target sequence in its interaction with calmodulin.

W A Findlay 1, M J Gradwell 1, P M Bayley 1
PMCID: PMC2143005  PMID: 8563635

Abstract

The binding of calmodulin (CaM) to four synthetic peptide analogues of the skeletal muscle myosin light chain kinase (sk-MLCK) target sequence has been studied using 1H-NMR. The 18-residue peptide WFF is anchored to CaM via the interaction of the Trp 4 side chain with the C-domain and the Phe 17 side chain with the N-domain of the protein. A peptide corresponding to the first 10 residues (WF10) does not provide the second anchoring residue and is not long enough to span both domains of CaM. 1H-NMR spectroscopy indicates that the WF10 peptide interacts specifically with the C-domain of CaM, and the chemical shifts of the bound Trp side chain are very similar in the CaM:WF10 and CaM:WFF complexes. Binding of the C-domain of CaM to the strongly basic region around Trp 4 of this MLCK sequence may be an important step in target recognition. Comparison of 1H-NMR spectra of CaM bound to WFF, a Trp 4-->Phe analogue (FFF), or a Trp 4-->Phe/Phe 17-->Trp analogue (FFW) suggests that all three peptides bind to CaM in the same orientation, i.e., with the peptide side chain in position 4 interacting with the C-domain and the side chain in position 17 interacting with the N-domain. This indicates that a Trp residue in position 4 is not an absolute requirement for binding this target sequence and that interchanging the Trp 4 and Phe 17 residues does not reverse the orientation of the bound peptide, in confirmation of the deduction from previous indirect studies using circular dichroism (Findlay WA, Martin SR, Beckingham K, Bayley PM, 1995, Biochemistry 34:2087-2094). Molecular modeling/energy minimization studies indicate that only minor local changes in the protein structure are required to accommodate binding of the bulkier Trp 17 side chain of the FFW peptide to the N-domain of CaM.

Full Text

The Full Text of this article is available as a PDF (768.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afshar M., Caves L. S., Guimard L., Hubbard R. E., Calas B., Grassy G., Haiech J. Investigating the high affinity and low sequence specificity of calmodulin binding to its targets. J Mol Biol. 1994 Dec 16;244(5):554–571. doi: 10.1006/jmbi.1994.1752. [DOI] [PubMed] [Google Scholar]
  2. Babu Y. S., Bugg C. E., Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988 Nov 5;204(1):191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
  3. Babu Y. S., Sack J. S., Greenhough T. J., Bugg C. E., Means A. R., Cook W. J. Three-dimensional structure of calmodulin. Nature. 1985 May 2;315(6014):37–40. doi: 10.1038/315037a0. [DOI] [PubMed] [Google Scholar]
  4. Bagchi I. C., Huang Q. H., Means A. R. Identification of amino acids essential for calmodulin binding and activation of smooth muscle myosin light chain kinase. J Biol Chem. 1992 Feb 15;267(5):3024–3029. [PubMed] [Google Scholar]
  5. Blumenthal D. K., Stull J. T. Effects of pH, ionic strength, and temperature on activation by calmodulin an catalytic activity of myosin light chain kinase. Biochemistry. 1982 May 11;21(10):2386–2391. doi: 10.1021/bi00539a017. [DOI] [PubMed] [Google Scholar]
  6. Chapman E. R., Alexander K., Vorherr T., Carafoli E., Storm D. R. Fluorescence energy transfer analysis of calmodulin-peptide complexes. Biochemistry. 1992 Dec 29;31(51):12819–12825. doi: 10.1021/bi00166a016. [DOI] [PubMed] [Google Scholar]
  7. Craig T. A., Watterson D. M., Prendergast F. G., Haiech J., Roberts D. M. Site-specific mutagenesis of the alpha-helices of calmodulin. Effects of altering a charge cluster in the helix that links the two halves of calmodulin. J Biol Chem. 1987 Mar 5;262(7):3278–3284. [PubMed] [Google Scholar]
  8. Crivici A., Ikura M. Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct. 1995;24:85–116. doi: 10.1146/annurev.bb.24.060195.000505. [DOI] [PubMed] [Google Scholar]
  9. Findlay W. A., Martin S. R., Beckingham K., Bayley P. M. Recovery of native structure by calcium binding site mutants of calmodulin upon binding of sk-MLCK target peptides. Biochemistry. 1995 Feb 21;34(7):2087–2094. doi: 10.1021/bi00007a001. [DOI] [PubMed] [Google Scholar]
  10. Guerini D., Krebs J., Carafoli E. Stimulation of the purified erythrocyte Ca2+-ATPase by tryptic fragments of calmodulin. J Biol Chem. 1984 Dec 25;259(24):15172–15177. [PubMed] [Google Scholar]
  11. Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
  12. Ikura M., Kay L. E., Bax A. A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry. 1990 May 15;29(19):4659–4667. doi: 10.1021/bi00471a022. [DOI] [PubMed] [Google Scholar]
  13. Lukas T. J., Burgess W. H., Prendergast F. G., Lau W., Watterson D. M. Calmodulin binding domains: characterization of a phosphorylation and calmodulin binding site from myosin light chain kinase. Biochemistry. 1986 Mar 25;25(6):1458–1464. doi: 10.1021/bi00354a041. [DOI] [PubMed] [Google Scholar]
  14. Matsushima S., Huang Y. P., Dudas C. V., Guerriero V., Jr, Hartshorne D. J. Mutants of smooth muscle myosin light chain kinase at tryptophan 800. Biochem Biophys Res Commun. 1994 Aug 15;202(3):1329–1336. doi: 10.1006/bbrc.1994.2076. [DOI] [PubMed] [Google Scholar]
  15. Maune J. F., Klee C. B., Beckingham K. Ca2+ binding and conformational change in two series of point mutations to the individual Ca(2+)-binding sites of calmodulin. J Biol Chem. 1992 Mar 15;267(8):5286–5295. [PubMed] [Google Scholar]
  16. Meador W. E., Means A. R., Quiocho F. A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992 Aug 28;257(5074):1251–1255. doi: 10.1126/science.1519061. [DOI] [PubMed] [Google Scholar]
  17. O'Neil K. T., DeGrado W. F. How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci. 1990 Feb;15(2):59–64. doi: 10.1016/0968-0004(90)90177-d. [DOI] [PubMed] [Google Scholar]
  18. Overington J., Donnelly D., Johnson M. S., Sali A., Blundell T. L. Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds. Protein Sci. 1992 Feb;1(2):216–226. doi: 10.1002/pro.5560010203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Persechini A., McMillan K., Leakey P. Activation of myosin light chain kinase and nitric oxide synthase activities by calmodulin fragments. J Biol Chem. 1994 Jun 10;269(23):16148–16154. [PubMed] [Google Scholar]
  20. Sanyal G., Richard L. M., Carraway K. L., 3rd, Puett D. Binding of amphiphilic peptides to a carboxy-terminal tryptic fragment of calmodulin. Biochemistry. 1988 Aug 23;27(17):6229–6236. doi: 10.1021/bi00417a006. [DOI] [PubMed] [Google Scholar]
  21. Shoemaker M. O., Lau W., Shattuck R. L., Kwiatkowski A. P., Matrisian P. E., Guerra-Santos L., Wilson E., Lukas T. J., Van Eldik L. J., Watterson D. M. Use of DNA sequence and mutant analyses and antisense oligodeoxynucleotides to examine the molecular basis of nonmuscle myosin light chain kinase autoinhibition, calmodulin recognition, and activity. J Cell Biol. 1990 Sep;111(3):1107–1125. doi: 10.1083/jcb.111.3.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vorherr T., James P., Krebs J., Enyedi A., McCormick D. J., Penniston J. T., Carafoli E. Interaction of calmodulin with the calmodulin binding domain of the plasma membrane Ca2+ pump. Biochemistry. 1990 Jan 16;29(2):355–365. doi: 10.1021/bi00454a008. [DOI] [PubMed] [Google Scholar]
  23. Weber P. C., Lukas T. J., Craig T. A., Wilson E., King M. M., Kwiatkowski A. P., Watterson D. M. Computational and site-specific mutagenesis analyses of the asymmetric charge distribution on calmodulin. Proteins. 1989;6(1):70–85. doi: 10.1002/prot.340060107. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES