Abstract
A few studies indirectly support the existence of an intermediate in the transition of Ca(2+)-saturated bovine alpha-lactalbumin (alpha-LA) from the native (N) to the acidic (A) state, known as the molten globule state. However, direct experimental evidence for the appearance of this intermediate has not been obtained. The signal of circular polarization of luminescence (CPL) is sensitive to fine conformational transitions because of its susceptibility to changes in the environmental asymmetry of fluorescent chromophores in their excited electronic states. In the present study, CPL measurements were applied using the intrinsic tryptophan fluorescence of alpha-LA as well as the fluorescence of 8-anilino-1-naphthalenesulfonic acid (ANS) bound to alpha-LA. CPL of tryptophan and ANS was measured in the pH range of 2.5-6 in order to find direct experimental evidence for the proposed intermediate. CPL (characterized by the emission anisotropy factor, g(em)) depends on the asymmetry of the protein molecular structure in the environment of the tryptophan and the ANS chromophores in the excited electronic state. The pH dependence of both the gab, absorption anisotropy factor determined by CD, and the ANS steady state fluorescence, showed a single transition at pH 3-3.7 as already reported elsewhere. This transition was interpreted as being a result of a change of the alpha-LA tertiary structure, which resulted in a loss of asymmetry of the environment of both the tryptophan residues and the ANS hydrophobic binding sites. The pH dependence of the tryptophan and ANS g(em) showed an additional conformational transition at pH 4-5, which coincided with the pKa of Ca2+ dissociation (pKa 5), as predicted by Permyakov et al. (1981, Biochem Biophys Res Commun 100:191-197). The titration curve showed that there is a pH range between 3.7 and 4.1 in which alpha-LA exists in an intermediate state between the N- and A-state. We suggest that the intermediate is the premolten globule state characterized by a reduced Ca2+ binding to the alpha-LA, native-like tertiary structure, and reduced asymmetric fluctuation of the tertiary structure on the nanosecond time scale. This intermediate resembles the "critical activated state" theoretically deduced by Kuwajima et al. (1989, J Mol Biol 206:547-561). The present study demonstrates the power of CPL measurements for the investigation of folding/unfolding transitions in proteins.
Full Text
The Full Text of this article is available as a PDF (828.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bell J. E., Castellino F. J., Trayer I. P., Hill R. L. Modification of bovine alpha-lactalbumin with N-bromosuccinimide and 2-hydroxy-5-nitrobenzylbromide. J Biol Chem. 1975 Oct 10;250(19):7579–7585. [PubMed] [Google Scholar]
- Bratcher S. C., Kronman M. J. Metal ion binding to the N and A conformers of bovine alpha-lactalbumin. J Biol Chem. 1984 Sep 10;259(17):10875–10886. [PubMed] [Google Scholar]
- Chyan C. L., Wormald C., Dobson C. M., Evans P. A., Baum J. Structure and stability of the molten globule state of guinea-pig alpha-lactalbumin: a hydrogen exchange study. Biochemistry. 1993 Jun 1;32(21):5681–5691. doi: 10.1021/bi00072a025. [DOI] [PubMed] [Google Scholar]
- Creighton T. E., Ewbank J. J. Disulfide-rearranged molten globule state of alpha-lactalbumin. Biochemistry. 1994 Feb 15;33(6):1534–1538. doi: 10.1021/bi00172a033. [DOI] [PubMed] [Google Scholar]
- Dolgikh D. A., Abaturov L. V., Bolotina I. A., Brazhnikov E. V., Bychkova V. E., Gilmanshin R. I., Lebedev YuO, Semisotnov G. V., Tiktopulo E. I., Ptitsyn O. B. Compact state of a protein molecule with pronounced small-scale mobility: bovine alpha-lactalbumin. Eur Biophys J. 1985;13(2):109–121. doi: 10.1007/BF00256531. [DOI] [PubMed] [Google Scholar]
- Dolgikh D. A., Gilmanshin R. I., Brazhnikov E. V., Bychkova V. E., Semisotnov G. V., Venyaminov SYu, Ptitsyn O. B. Alpha-Lactalbumin: compact state with fluctuating tertiary structure? FEBS Lett. 1981 Dec 28;136(2):311–315. doi: 10.1016/0014-5793(81)80642-4. [DOI] [PubMed] [Google Scholar]
- Ewbank J. J., Creighton T. E. The molten globule protein conformation probed by disulphide bonds. Nature. 1991 Apr 11;350(6318):518–520. doi: 10.1038/350518a0. [DOI] [PubMed] [Google Scholar]
- Fitzgerald R. J., Swaisgood H. E. Binding of ions and hydrophobic probes to alpha-lactalbumin and kappa-casein as determined by analytical affinity chromatography. Arch Biochem Biophys. 1989 Jan;268(1):239–248. doi: 10.1016/0003-9861(89)90585-7. [DOI] [PubMed] [Google Scholar]
- Grinvald A., Schlessinger J., Pecht I., Steinberg I. Z. Homogeneity and variability in the structure of azurin molecules studied by fluorescence decay and circular polarization. Biochemistry. 1975 May 6;14(9):1921–1929. doi: 10.1021/bi00680a018. [DOI] [PubMed] [Google Scholar]
- Jeng M. F., Englander S. W. Stable submolecular folding units in a non-compact form of cytochrome c. J Mol Biol. 1991 Oct 5;221(3):1045–1061. doi: 10.1016/0022-2836(91)80191-v. [DOI] [PubMed] [Google Scholar]
- KRONMAN M. J., ANDREOTTI R. E. INTER- AND INTRAMOLECULAR INTERACTIONS OF ALPHA-LACTALBUMIN. I. THE APPARENT HETEROGENEITY AT ACID PH. Biochemistry. 1964 Aug;3:1145–1151. doi: 10.1021/bi00896a024. [DOI] [PubMed] [Google Scholar]
- Kronman M. J., Bratcher S. C. Conformational changes induced by zinc and terbium binding to native bovine alpha-lactalbumin and calcium-free alpha-lactalbumin. J Biol Chem. 1984 Sep 10;259(17):10887–10895. [PubMed] [Google Scholar]
- Kronman M. J., Sinha S. K., Brew K. Characteristics of the binding of Ca2+ and other divalent metal ions to bovine alpha-lactalbumin. J Biol Chem. 1981 Aug 25;256(16):8582–8587. [PubMed] [Google Scholar]
- Kuwajima K. A folding model of alpha-lactalbumin deduced from the three-state denaturation mechanism. J Mol Biol. 1977 Aug 5;114(2):241–258. doi: 10.1016/0022-2836(77)90208-x. [DOI] [PubMed] [Google Scholar]
- Kuwajima K., Hiraoka Y., Ikeguchi M., Sugai S. Comparison of the transient folding intermediates in lysozyme and alpha-lactalbumin. Biochemistry. 1985 Feb 12;24(4):874–881. doi: 10.1021/bi00325a010. [DOI] [PubMed] [Google Scholar]
- Kuwajima K., Mitani M., Sugai S. Characterization of the critical state in protein folding. Effects of guanidine hydrochloride and specific Ca2+ binding on the folding kinetics of alpha-lactalbumin. J Mol Biol. 1989 Apr 5;206(3):547–561. doi: 10.1016/0022-2836(89)90500-7. [DOI] [PubMed] [Google Scholar]
- Kuwajima K., Nitta K., Sugai S. Electrophoretic investigations of the acid conformational change of alpha-lactalbumin. J Biochem. 1975 Jul;78(1):205–211. [PubMed] [Google Scholar]
- Kuwajima K., Nitta K., Sugai S. Intramolecular perturbation of tryptophans induced by the protonation of ionizable groups in goat alpha-lactalbumin. Biochim Biophys Acta. 1980 Jun 26;623(2):389–401. doi: 10.1016/0005-2795(80)90268-8. [DOI] [PubMed] [Google Scholar]
- Kuwajima K., Nitta K., Yoneyama M., Sugai S. Three-state denaturation of alpha-lactalbumin by guanidine hydrochloride. J Mol Biol. 1976 Sep 15;106(2):359–373. doi: 10.1016/0022-2836(76)90091-7. [DOI] [PubMed] [Google Scholar]
- Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins. 1989;6(2):87–103. doi: 10.1002/prot.340060202. [DOI] [PubMed] [Google Scholar]
- Lala A. K., Kaul P. Increased exposure of hydrophobic surface in molten globule state of alpha-lactalbumin. Fluorescence and hydrophobic photolabeling studies. J Biol Chem. 1992 Oct 5;267(28):19914–19918. [PubMed] [Google Scholar]
- Mulqueen P. M., Kronman M. J. Binding of naphthalene dyes to the N and A conformers of bovine alpha-lactalbumin. Arch Biochem Biophys. 1982 Apr 15;215(1):28–39. doi: 10.1016/0003-9861(82)90275-2. [DOI] [PubMed] [Google Scholar]
- Murakami K., Andree P. J., Berliner L. J. Metal ion binding to alpha-lactalbumin species. Biochemistry. 1982 Oct 26;21(22):5488–5494. doi: 10.1021/bi00265a017. [DOI] [PubMed] [Google Scholar]
- Murakami K., Berliner L. J. A distinct zinc binding site in the alpha-lactalbumins regulates calcium binding. Is there a physiological role for this control? Biochemistry. 1983 Jul 5;22(14):3370–3374. doi: 10.1021/bi00283a010. [DOI] [PubMed] [Google Scholar]
- Nölting B., Sligar S. G. Adiabatic compressibility of molten globules. Biochemistry. 1993 Nov 23;32(46):12319–12323. doi: 10.1021/bi00097a007. [DOI] [PubMed] [Google Scholar]
- Ostrovsky A. V., Kalinichenko L. P., Emelyanenko V. I., Klimanov A. V., Permyakov E. A. Environment of tryptophan residues in various conformational states of alpha-lactalbumin studied by time-resolved and steady-state fluorescence spectroscopy. Biophys Chem. 1988 Jun;30(2):105–112. doi: 10.1016/0301-4622(88)85008-7. [DOI] [PubMed] [Google Scholar]
- Peng Z. Y., Kim P. S. A protein dissection study of a molten globule. Biochemistry. 1994 Mar 1;33(8):2136–2141. doi: 10.1021/bi00174a021. [DOI] [PubMed] [Google Scholar]
- Peng Z. Y., Wu L. C., Kim P. S. Local structural preferences in the alpha-lactalbumin molten globule. Biochemistry. 1995 Mar 14;34(10):3248–3252. doi: 10.1021/bi00010a014. [DOI] [PubMed] [Google Scholar]
- Permyakov E. A., Morozova L. A., Burstein E. A. Cation binding effects on the pH, thermal and urea denaturation transitions in alpha-lactalbumin. Biophys Chem. 1985 Jan;21(1):21–31. doi: 10.1016/0301-4622(85)85003-1. [DOI] [PubMed] [Google Scholar]
- Permyakov E. A., Yarmolenko V. V., Kalinichenko L. P., Morozova L. A., Burstein E. A. Calcium binding to alpha-lactalbumin: structural rearrangement and association constant evaluation by means of intrinsic protein fluorescence changes. Biochem Biophys Res Commun. 1981 May 15;100(1):191–197. doi: 10.1016/s0006-291x(81)80081-2. [DOI] [PubMed] [Google Scholar]
- Robbins F. M., Holmes L. G. Circular dichroism spectra of alpha-lactalbumin. Biochim Biophys Acta. 1970 Nov 17;221(2):234–240. doi: 10.1016/0005-2795(70)90263-1. [DOI] [PubMed] [Google Scholar]
- Schauerte J. A., Schlyer B. D., Steel D. G., Gafni A. Nanosecond time-resolved circular polarization of fluorescence: study of NADH bound to horse liver alcohol dehydrogenase. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):569–573. doi: 10.1073/pnas.92.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schauerte J. A., Steel D. G., Gafni A. Time-resolved circularly polarized protein phosphorescence. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10154–10158. doi: 10.1073/pnas.89.21.10154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlessinger J., Levitzki A. Molecular basis of negative co-operativity in rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. J Mol Biol. 1974 Feb 5;82(4):547–561. doi: 10.1016/0022-2836(74)90248-4. [DOI] [PubMed] [Google Scholar]
- Schlessinger J., Steinberg I. Z., Givol D., Hochman J., Pecht I. Antigen-induced conformational changes in antibodies and their Fab fragments studied by circular polarization of fluorescence. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2775–2779. doi: 10.1073/pnas.72.7.2775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlessinger J., Steinberg I. Z., Givol D., Hochman J. Subunit interaction in antibodies and antibody fragments studied by circular polarization of fluorescence. FEBS Lett. 1975 Apr 1;52(2):231–235. doi: 10.1016/0014-5793(75)80812-x. [DOI] [PubMed] [Google Scholar]
- Semisotnov G. V., Rodionova N. A., Razgulyaev O. I., Uversky V. N., Gripas' A. F., Gilmanshin R. I. Study of the "molten globule" intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers. 1991 Jan;31(1):119–128. doi: 10.1002/bip.360310111. [DOI] [PubMed] [Google Scholar]
- Sommers P. B., Kronman M. J. Comparative fluorescence properties of bovine, goat, human and guinea pig alpha lactalbumin. Characterization of the environments of individual tryptophan residues in partially folded conformers. Biophys Chem. 1980 Apr;11(2):217–232. doi: 10.1016/0301-4622(80)80024-x. [DOI] [PubMed] [Google Scholar]
- Steinberg I. Z. Circular polarization of luminescence: biochemical and biophysical applications. Annu Rev Biophys Bioeng. 1978;7:113–137. doi: 10.1146/annurev.bb.07.060178.000553. [DOI] [PubMed] [Google Scholar]
- Steinberg I. Z. Circularly polarized luminescence. Methods Enzymol. 1978;49:179–199. doi: 10.1016/s0076-6879(78)49009-3. [DOI] [PubMed] [Google Scholar]