Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Nov;4(11):2392–2404. doi: 10.1002/pro.5560041118

Significance of structural changes in proteins: expected errors in refined protein structures.

R M Stroud 1, E B Fauman 1
PMCID: PMC2143015  PMID: 8563637

Abstract

A quantitative expression key to evaluating significant structural differences or induced shifts between any two protein structures is derived. Because crystallography leads to reports of a single (or sometimes dual) position for each atom, the significance of any structural change based on comparison of two structures depends critically on knowing the expected precision of each median atomic position reported, and on extracting it for each atom, from the information provided in the Protein Data Bank and in the publication. The differences between structures of protein molecules that should be identical, and that are normally distributed, indicating that they are not affected by crystal contacts, were analyzed with respect to many potential indicators of structure precision, so as to extract, essentially by "machine learning" principles, a generally applicable expression involving the highest correlates. Eighteen refined crystal structures from the Protein Data Bank, in which there are multiple molecules in the crystallographic asymmetric unit, were selected and compared. The thermal B factor, the connectivity of the atom, and the ratio of the number of reflections to the number of atoms used in refinement correlate best with the magnitude of the positional differences between regions of the structures that otherwise would be expected to be the same. These results are embodied in a six-parameter equation that can be applied to any crystallographically refined structure to estimate the expected uncertainty in position of each atom. Structure change in a macromolecule can thus be referenced to the expected uncertainty in atomic position as reflected in the variance between otherwise identical structures with the observed values of correlated parameters.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  2. Birktoft J. J., Rhodes G., Banaszak L. J. Refined crystal structure of cytoplasmic malate dehydrogenase at 2.5-A resolution. Biochemistry. 1989 Jul 11;28(14):6065–6081. doi: 10.1021/bi00440a051. [DOI] [PubMed] [Google Scholar]
  3. Bode W., Chen Z., Bartels K., Kutzbach C., Schmidt-Kastner G., Bartunik H. Refined 2 A X-ray crystal structure of porcine pancreatic kallikrein A, a specific trypsin-like serine proteinase. Crystallization, structure determination, crystallographic refinement, structure and its comparison with bovine trypsin. J Mol Biol. 1983 Feb 25;164(2):237–282. doi: 10.1016/0022-2836(83)90077-3. [DOI] [PubMed] [Google Scholar]
  4. Bolin J. T., Filman D. J., Matthews D. A., Hamlin R. C., Kraut J. Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 A resolution. I. General features and binding of methotrexate. J Biol Chem. 1982 Nov 25;257(22):13650–13662. [PubMed] [Google Scholar]
  5. Bott R., Frane J. Incorporation of crystallographic temperature factors in the statistical analysis of protein tertiary structures. Protein Eng. 1990 Aug;3(8):649–657. doi: 10.1093/protein/3.8.649. [DOI] [PubMed] [Google Scholar]
  6. Chothia C., Lesk A. M. The relation between the divergence of sequence and structure in proteins. EMBO J. 1986 Apr;5(4):823–826. doi: 10.1002/j.1460-2075.1986.tb04288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clore G. M., Gronenborn A. M. Comparison of the solution nuclear magnetic resonance and X-ray crystal structures of human recombinant interleukin-1 beta. J Mol Biol. 1991 Sep 5;221(1):47–53. doi: 10.1016/0022-2836(91)80202-6. [DOI] [PubMed] [Google Scholar]
  8. Deisenhofer J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-A resolution. Biochemistry. 1981 Apr 28;20(9):2361–2370. [PubMed] [Google Scholar]
  9. Epp O., Ladenstein R., Wendel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem. 1983 Jun 1;133(1):51–69. doi: 10.1111/j.1432-1033.1983.tb07429.x. [DOI] [PubMed] [Google Scholar]
  10. Fermi G., Perutz M. F., Shaanan B., Fourme R. The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J Mol Biol. 1984 May 15;175(2):159–174. doi: 10.1016/0022-2836(84)90472-8. [DOI] [PubMed] [Google Scholar]
  11. Finzel B. C., Weber P. C., Hardman K. D., Salemme F. R. Structure of ferricytochrome c' from Rhodospirillum molischianum at 1.67 A resolution. J Mol Biol. 1985 Dec 5;186(3):627–643. doi: 10.1016/0022-2836(85)90135-4. [DOI] [PubMed] [Google Scholar]
  12. Ke H. M., Honzatko R. B., Lipscomb W. N. Structure of unligated aspartate carbamoyltransferase of Escherichia coli at 2.6-A resolution. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4037–4040. doi: 10.1073/pnas.81.13.4037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Montfort W. R., Perry K. M., Fauman E. B., Finer-Moore J. S., Maley G. F., Hardy L., Maley F., Stroud R. M. Structure, multiple site binding, and segmental accommodation in thymidylate synthase on binding dUMP and an anti-folate. Biochemistry. 1990 Jul 31;29(30):6964–6977. doi: 10.1021/bi00482a004. [DOI] [PubMed] [Google Scholar]
  14. Morris A. L., MacArthur M. W., Hutchinson E. G., Thornton J. M. Stereochemical quality of protein structure coordinates. Proteins. 1992 Apr;12(4):345–364. doi: 10.1002/prot.340120407. [DOI] [PubMed] [Google Scholar]
  15. Norris G. E., Anderson B. F., Baker E. N. Structure of azurin from Alcaligenes denitrificans at 2.5 A resolution. J Mol Biol. 1983 Apr 15;165(3):501–521. doi: 10.1016/s0022-2836(83)80216-2. [DOI] [PubMed] [Google Scholar]
  16. Padlan E. A., Love W. E. Refined crystal structure of deoxyhemoglobin S. I. Restrained least-squares refinement at 3.0-A resolution. J Biol Chem. 1985 Jul 15;260(14):8272–8279. doi: 10.2210/pdb1hbs/pdb. [DOI] [PubMed] [Google Scholar]
  17. Perry K. M., Fauman E. B., Finer-Moore J. S., Montfort W. R., Maley G. F., Maley F., Stroud R. M. Plastic adaptation toward mutations in proteins: structural comparison of thymidylate synthases. Proteins. 1990;8(4):315–333. doi: 10.1002/prot.340080406. [DOI] [PubMed] [Google Scholar]
  18. Rypniewski W. R., Evans P. R. Crystal structure of unliganded phosphofructokinase from Escherichia coli. J Mol Biol. 1989 Jun 20;207(4):805–821. doi: 10.1016/0022-2836(89)90246-5. [DOI] [PubMed] [Google Scholar]
  19. Skarzyński T., Moody P. C., Wonacott A. J. Structure of holo-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus at 1.8 A resolution. J Mol Biol. 1987 Jan 5;193(1):171–187. doi: 10.1016/0022-2836(87)90635-8. [DOI] [PubMed] [Google Scholar]
  20. Takano T., Dickerson R. E. Redox conformation changes in refined tuna cytochrome c. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6371–6375. doi: 10.1073/pnas.77.11.6371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tsukada H., Blow D. M. Structure of alpha-chymotrypsin refined at 1.68 A resolution. J Mol Biol. 1985 Aug 20;184(4):703–711. doi: 10.1016/0022-2836(85)90314-6. [DOI] [PubMed] [Google Scholar]
  22. Waller D. A., Liddington R. C. Refinement of a partially oxygenated T state human haemoglobin at 1.5 A resolution. Acta Crystallogr B. 1990 Jun 1;46(Pt 3):409–418. doi: 10.1107/s0108768190000313. [DOI] [PubMed] [Google Scholar]
  23. Xia Z. X., Mathews F. S. Molecular structure of flavocytochrome b2 at 2.4 A resolution. J Mol Biol. 1990 Apr 20;212(4):837–863. doi: 10.1016/0022-2836(90)90240-M. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES