Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Nov;4(11):2349–2357. doi: 10.1002/pro.5560041113

Irreversible thermal denaturation of Torpedo californica acetylcholinesterase.

D I Kreimer 1, V L Shnyrov 1, E Villar 1, I Silman 1, L Weiner 1
PMCID: PMC2143016  PMID: 8563632

Abstract

Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide-linked homodimer with 537 amino acids in each subunit, was studied by differential scanning calorimetry. It displays a single calorimetric peak that is completely irreversible, the shape and temperature maximum depending on the scan rate. Thus, thermal denaturation of acetylcholinesterase is an irreversible process, under kinetic control, which is described well by the two-state kinetic scheme N-->D, with activation energy 131 +/- 8 kcal/mol. Analysis of the kinetics of denaturation in the thermal transition temperature range, by monitoring loss of enzymic activity, yields activation energy of 121 +/- 20 kcal/mol, similar to the value obtained by differential scanning calorimetry. Thermally denatured acetylcholinesterase displays spectroscopic characteristics typical of a molten globule state, similar to those of partially unfolded enzyme obtained by modification with thiol-specific reagents. Evidence is presented that the partially unfolded states produced by the two different treatments are thermodynamically favored relative to the native state.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker D., Agard D. A. Kinetics versus thermodynamics in protein folding. Biochemistry. 1994 Jun 21;33(24):7505–7509. doi: 10.1021/bi00190a002. [DOI] [PubMed] [Google Scholar]
  2. Brandts J. F., Hu C. Q., Lin L. N., Mos M. T. A simple model for proteins with interacting domains. Applications to scanning calorimetry data. Biochemistry. 1989 Oct 17;28(21):8588–8596. doi: 10.1021/bi00447a048. [DOI] [PubMed] [Google Scholar]
  3. Conejero-Lara F., Mateo P. L., Aviles F. X., Sanchez-Ruiz J. M. Effect of Zn2+ on the thermal denaturation of carboxypeptidase B. Biochemistry. 1991 Feb 26;30(8):2067–2072. doi: 10.1021/bi00222a010. [DOI] [PubMed] [Google Scholar]
  4. Conejero-Lara F., Sánchez-Ruiz J. M., Mateo P. L., Burgos F. J., Vendrell J., Avilés F. X. Differential scanning calorimetric study of carboxypeptidase B, procarboxypeptidase B and its globular activation domain. Eur J Biochem. 1991 Sep 15;200(3):663–670. doi: 10.1111/j.1432-1033.1991.tb16230.x. [DOI] [PubMed] [Google Scholar]
  5. Dolginova E. A., Roth E., Silman I., Weiner L. M. Chemical modification of Torpedo acetylcholinesterase by disulfides: appearance of a "molten globule" state. Biochemistry. 1992 Dec 8;31(48):12248–12254. doi: 10.1021/bi00163a039. [DOI] [PubMed] [Google Scholar]
  6. Eder J., Fersht A. R. Pro-sequence-assisted protein folding. Mol Microbiol. 1995 May;16(4):609–614. doi: 10.1111/j.1365-2958.1995.tb02423.x. [DOI] [PubMed] [Google Scholar]
  7. Eder J., Rheinnecker M., Fersht A. R. Folding of subtilisin BPN': characterization of a folding intermediate. Biochemistry. 1993 Jan 12;32(1):18–26. doi: 10.1021/bi00052a004. [DOI] [PubMed] [Google Scholar]
  8. Eichler J., Kreimer D. I., Varon L., Silman I., Weiner L. A "molten globule" of Torpedo acetylcholinesterase undergoes thiol-disulfide exchange. J Biol Chem. 1994 Dec 2;269(48):30093–30096. [PubMed] [Google Scholar]
  9. Evans P. A., Topping K. D., Woolfson D. N., Dobson C. M. Hydrophobic clustering in nonnative states of a protein: interpretation of chemical shifts in NMR spectra of denatured states of lysozyme. Proteins. 1991;9(4):248–266. doi: 10.1002/prot.340090404. [DOI] [PubMed] [Google Scholar]
  10. Freire E., van Osdol W. W., Mayorga O. L., Sanchez-Ruiz J. M. Calorimetrically determined dynamics of complex unfolding transitions in proteins. Annu Rev Biophys Biophys Chem. 1990;19:159–188. doi: 10.1146/annurev.bb.19.060190.001111. [DOI] [PubMed] [Google Scholar]
  11. Futerman A. H., Low M. G., Ackermann K. E., Sherman W. R., Silman I. Identification of covalently bound inositol in the hydrophobic membrane-anchoring domain of Torpedo acetylcholinesterase. Biochem Biophys Res Commun. 1985 May 31;129(1):312–317. doi: 10.1016/0006-291x(85)91439-1. [DOI] [PubMed] [Google Scholar]
  12. Galisteo M. L., Mateo P. L., Sanchez-Ruiz J. M. Kinetic study on the irreversible thermal denaturation of yeast phosphoglycerate kinase. Biochemistry. 1991 Feb 26;30(8):2061–2066. doi: 10.1021/bi00222a009. [DOI] [PubMed] [Google Scholar]
  13. Griko Y. V., Gittis A., Lattman E. E., Privalov P. L. Residual structure in a staphylococcal nuclease fragment. Is it a molten globule and is its unfolding a first-order phase transition? J Mol Biol. 1994 Oct 14;243(1):93–99. doi: 10.1006/jmbi.1994.1632. [DOI] [PubMed] [Google Scholar]
  14. Görne-Tschelnokow U., Naumann D., Weise C., Hucho F. Secondary structure and temperature behaviour of acetylcholinesterase. Studies by Fourier-transform infrared spectroscopy. Eur J Biochem. 1993 May 1;213(3):1235–1242. doi: 10.1111/j.1432-1033.1993.tb17874.x. [DOI] [PubMed] [Google Scholar]
  15. Jaenicke R. Protein folding: local structures, domains, subunits, and assemblies. Biochemistry. 1991 Apr 2;30(13):3147–3161. doi: 10.1021/bi00227a001. [DOI] [PubMed] [Google Scholar]
  16. Kim P. S., Baldwin R. L. Intermediates in the folding reactions of small proteins. Annu Rev Biochem. 1990;59:631–660. doi: 10.1146/annurev.bi.59.070190.003215. [DOI] [PubMed] [Google Scholar]
  17. Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins. 1989;6(2):87–103. doi: 10.1002/prot.340060202. [DOI] [PubMed] [Google Scholar]
  18. Le Bihan T., Gicquaud C. Kinetic study of the thermal denaturation of G actin using differential scanning calorimetry and intrinsic fluorescence spectroscopy. Biochem Biophys Res Commun. 1993 Aug 16;194(3):1065–1073. doi: 10.1006/bbrc.1993.1930. [DOI] [PubMed] [Google Scholar]
  19. Lepock J. R., Ritchie K. P., Kolios M. C., Rodahl A. M., Heinz K. A., Kruuv J. Influence of transition rates and scan rate on kinetic simulations of differential scanning calorimetry profiles of reversible and irreversible protein denaturation. Biochemistry. 1992 Dec 22;31(50):12706–12712. doi: 10.1021/bi00165a023. [DOI] [PubMed] [Google Scholar]
  20. Lopez Mayorga O., Freire E. Dynamic analysis of differential scanning calorimetry data. Biophys Chem. 1987 Jul;27(1):87–96. doi: 10.1016/0301-4622(87)80049-2. [DOI] [PubMed] [Google Scholar]
  21. Maulet Y., Camp S., Gibney G., Rachinsky T. L., Ekström T. J., Taylor P. Single gene encodes glycophospholipid-anchored and asymmetric acetylcholinesterase forms: alternative coding exons contain inverted repeat sequences. Neuron. 1990 Feb;4(2):289–301. doi: 10.1016/0896-6273(90)90103-m. [DOI] [PubMed] [Google Scholar]
  22. Milardi D., La Rosa C., Grasso D. Extended theoretical analysis of irreversible protein thermal unfolding. Biophys Chem. 1994 Nov;52(3):183–189. doi: 10.1016/0301-4622(94)00033-g. [DOI] [PubMed] [Google Scholar]
  23. Morin P. E., Diggs D., Freire E. Thermal stability of membrane-reconstituted yeast cytochrome c oxidase. Biochemistry. 1990 Jan 23;29(3):781–788. doi: 10.1021/bi00455a028. [DOI] [PubMed] [Google Scholar]
  24. Privalov P. L. Stability of proteins. Proteins which do not present a single cooperative system. Adv Protein Chem. 1982;35:1–104. [PubMed] [Google Scholar]
  25. Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
  26. Ruigrok R. W., Aitken A., Calder L. J., Martin S. R., Skehel J. J., Wharton S. A., Weis W., Wiley D. C. Studies on the structure of the influenza virus haemagglutinin at the pH of membrane fusion. J Gen Virol. 1988 Nov;69(Pt 11):2785–2795. doi: 10.1099/0022-1317-69-11-2785. [DOI] [PubMed] [Google Scholar]
  27. Seshadri S., Oberg K. A., Fink A. L. Thermally denatured ribonuclease A retains secondary structure as shown by FTIR. Biochemistry. 1994 Feb 15;33(6):1351–1355. doi: 10.1021/bi00172a010. [DOI] [PubMed] [Google Scholar]
  28. Shinde U., Li Y., Chatterjee S., Inouye M. Folding pathway mediated by an intramolecular chaperone. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6924–6928. doi: 10.1073/pnas.90.15.6924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Shnyrov V. L. Calorimetric investigation of the NABH4-modified bacteriorhodopsin in purple membrane from Halobacterium halobium. Biochem Mol Biol Int. 1994 Sep;34(2):281–286. [PubMed] [Google Scholar]
  30. Shnyrov V. L., Mateo P. L. Thermal transitions in the purple membrane from Halobacterium halobium. FEBS Lett. 1993 Jun 14;324(2):237–240. doi: 10.1016/0014-5793(93)81400-t. [DOI] [PubMed] [Google Scholar]
  31. Shnyrov V. L., Zhadan G. G., Akoev I. G. Calorimetric measurements of the effect of 330-MHz radiofrequency radiation on human erythrocyte ghosts. Bioelectromagnetics. 1984;5(4):411–418. doi: 10.1002/bem.2250050406. [DOI] [PubMed] [Google Scholar]
  32. Sussman J. L., Harel M., Frolow F., Varon L., Toker L., Futerman A. H., Silman I. Purification and crystallization of a dimeric form of acetylcholinesterase from Torpedo californica subsequent to solubilization with phosphatidylinositol-specific phospholipase C. J Mol Biol. 1988 Oct 5;203(3):821–823. doi: 10.1016/0022-2836(88)90213-6. [DOI] [PubMed] [Google Scholar]
  33. Sánchez-Ruiz J. M., López-Lacomba J. L., Cortijo M., Mateo P. L. Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry. 1988 Mar 8;27(5):1648–1652. doi: 10.1021/bi00405a039. [DOI] [PubMed] [Google Scholar]
  34. Takahashi K., Sturtevant J. M. Thermal denaturation of streptomyces subtilisin inhibitor, subtilisin BPN', and the inhibitor-subtilisin complex. Biochemistry. 1981 Oct 13;20(21):6185–6190. doi: 10.1021/bi00524a042. [DOI] [PubMed] [Google Scholar]
  35. Taylor P., Jones J. W., Jacobs N. M. Acetylcholinesterase from Torpedo: characterization of an enzyme species isolated by lytic procedures. Mol Pharmacol. 1974 Jan;10(1):78–92. [PubMed] [Google Scholar]
  36. Weiner L., Kreimer D., Roth E., Silman I. Oxidative stress transforms acetylcholinesterase to a molten-globule-like state. Biochem Biophys Res Commun. 1994 Feb 15;198(3):915–922. doi: 10.1006/bbrc.1994.1130. [DOI] [PubMed] [Google Scholar]
  37. Wu C. S., Gan L., Yang J. T. Conformation similarities of the globular and tailed forms of acetylcholinesterase from Torpedo californica. Biochim Biophys Acta. 1987 Jan 5;911(1):25–36. doi: 10.1016/0167-4838(87)90266-4. [DOI] [PubMed] [Google Scholar]
  38. Zale S. E., Klibanov A. M. Why does ribonuclease irreversibly inactivate at high temperatures? Biochemistry. 1986 Sep 23;25(19):5432–5444. doi: 10.1021/bi00367a014. [DOI] [PubMed] [Google Scholar]
  39. Zhadan G. G., Shnyrov V. L. Differential-scanning-calorimetric study of the irreversible thermal denaturation of 8 kDa cytotoxin from the sea anemone Radianthus macrodactylus. Biochem J. 1994 May 1;299(Pt 3):731–733. doi: 10.1042/bj2990731. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES