Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Nov;4(11):2279–2288. doi: 10.1002/pro.5560041105

Drosophila engrailed-1,10-phenanthroline chimeras as probes of homeodomain-DNA complexes.

C Q Pan 1, R Landgraf 1, D S Sigman 1
PMCID: PMC2143021  PMID: 8563624

Abstract

We have converted the Drosophila engrailed homeodomain into a sequence-specific nuclease by linking the protein to the chemical nuclease 1,10-phenanthroline-copper (OP-Cu). Unique cysteines were introduced at six positions into the homeodomain by site-directed mutagenesis for the covalent attachment of OP-Cu. The varied DNA-binding affinity and specificity of these mutants and the DNA cleavage pattern of their OP-Cu derivatives allowed us to assess the crystal structure of the engrailed homeodomain-DNA complex. We have also achieved site-specific double-stranded DNA scission with one of the homeodomain mutants, E28C, which has the potential of being used to identify engrailed binding sites in the genome. Because the homeodomain is so well conserved among members of the homeodomain-containing protein family, other homeodomain proteins can be converted into nucleases by attaching OP-Cu at position 28 of their homeodomains.

Full Text

The Full Text of this article is available as a PDF (4.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ades S. E., Sauer R. T. Differential DNA-binding specificity of the engrailed homeodomain: the role of residue 50. Biochemistry. 1994 Aug 9;33(31):9187–9194. doi: 10.1021/bi00197a022. [DOI] [PubMed] [Google Scholar]
  2. Chen C. H., Mazumder A., Constant J. F., Sigman D. S. Nuclease activity of 1,10-phenanthroline-copper. New conjugates with low molecular weight targeting ligands. Bioconjug Chem. 1993 Jan-Feb;4(1):69–77. doi: 10.1021/bc00019a010. [DOI] [PubMed] [Google Scholar]
  3. Desplan C., Theis J., O'Farrell P. H. The sequence specificity of homeodomain-DNA interaction. Cell. 1988 Sep 23;54(7):1081–1090. doi: 10.1016/0092-8674(88)90123-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dranginis A. M. Binding of yeast a1 and alpha 2 as a heterodimer to the operator DNA of a haploid-specific gene. Nature. 1990 Oct 18;347(6294):682–685. doi: 10.1038/347682a0. [DOI] [PubMed] [Google Scholar]
  5. Gehring W. J., Affolter M., Bürglin T. Homeodomain proteins. Annu Rev Biochem. 1994;63:487–526. doi: 10.1146/annurev.bi.63.070194.002415. [DOI] [PubMed] [Google Scholar]
  6. Gehring W. J., Qian Y. Q., Billeter M., Furukubo-Tokunaga K., Schier A. F., Resendez-Perez D., Affolter M., Otting G., Wüthrich K. Homeodomain-DNA recognition. Cell. 1994 Jul 29;78(2):211–223. doi: 10.1016/0092-8674(94)90292-5. [DOI] [PubMed] [Google Scholar]
  7. Kenyon C. If birds can fly, why can't we? Homeotic genes and evolution. Cell. 1994 Jul 29;78(2):175–180. doi: 10.1016/0092-8674(94)90288-7. [DOI] [PubMed] [Google Scholar]
  8. Kissinger C. R., Liu B. S., Martin-Blanco E., Kornberg T. B., Pabo C. O. Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A resolution: a framework for understanding homeodomain-DNA interactions. Cell. 1990 Nov 2;63(3):579–590. doi: 10.1016/0092-8674(90)90453-l. [DOI] [PubMed] [Google Scholar]
  9. Kornberg T. B. Understanding the homeodomain. J Biol Chem. 1993 Dec 25;268(36):26813–26816. [PubMed] [Google Scholar]
  10. Krumlauf R. Hox genes in vertebrate development. Cell. 1994 Jul 29;78(2):191–201. doi: 10.1016/0092-8674(94)90290-9. [DOI] [PubMed] [Google Scholar]
  11. Lawrence P. A., Morata G. Homeobox genes: their function in Drosophila segmentation and pattern formation. Cell. 1994 Jul 29;78(2):181–189. doi: 10.1016/0092-8674(94)90289-5. [DOI] [PubMed] [Google Scholar]
  12. Pan C. Q., Feng J. A., Finkel S. E., Landgraf R., Sigman D., Johnson R. C. Structure of the Escherichia coli Fis-DNA complex probed by protein conjugated with 1,10-phenanthroline copper(I) complex. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1721–1725. doi: 10.1073/pnas.91.5.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pan C. Q., Landgraf R., Sigman D. S. DNA-binding proteins as site-specific nucleases. Mol Microbiol. 1994 May;12(3):335–342. doi: 10.1111/j.1365-2958.1994.tb01022.x. [DOI] [PubMed] [Google Scholar]
  14. Pendergrast P. S., Ebright Y. W., Ebright R. H. High-specificity DNA cleavage agent: design and application to kilobase and megabase DNA substrates. Science. 1994 Aug 12;265(5174):959–962. doi: 10.1126/science.8052855. [DOI] [PubMed] [Google Scholar]
  15. Pomerantz J. L., Sharp P. A. Homeodomain determinants of major groove recognition. Biochemistry. 1994 Sep 13;33(36):10851–10858. doi: 10.1021/bi00202a001. [DOI] [PubMed] [Google Scholar]
  16. Poole S. J., Kauvar L. M., Drees B., Kornberg T. The engrailed locus of Drosophila: structural analysis of an embryonic transcript. Cell. 1985 Jan;40(1):37–43. doi: 10.1016/0092-8674(85)90306-x. [DOI] [PubMed] [Google Scholar]
  17. Shang Z., Ebright Y. W., Iler N., Pendergrast P. S., Echelard Y., McMahon A. P., Ebright R. H., Abate C. DNA affinity cleaving analysis of homeodomain-DNA interaction: identification of homeodomain consensus sites in genomic DNA. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):118–122. doi: 10.1073/pnas.91.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Siegfried E., Chou T. B., Perrimon N. wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell. 1992 Dec 24;71(7):1167–1179. doi: 10.1016/s0092-8674(05)80065-0. [DOI] [PubMed] [Google Scholar]
  19. Sigman D. S. Chemical nucleases. Biochemistry. 1990 Oct 2;29(39):9097–9105. doi: 10.1021/bi00491a001. [DOI] [PubMed] [Google Scholar]
  20. Stark M. R., Johnson A. D. Interaction between two homeodomain proteins is specified by a short C-terminal tail. Nature. 1994 Sep 29;371(6496):429–432. doi: 10.1038/371429a0. [DOI] [PubMed] [Google Scholar]
  21. Sutton C. L., Mazumder A., Chen C. H., Sigman D. S. Transforming the Escherichia coli Trp repressor into a site-specific nuclease. Biochemistry. 1993 Apr 27;32(16):4225–4230. doi: 10.1021/bi00067a009. [DOI] [PubMed] [Google Scholar]
  22. Weigel D., Meyerowitz E. M. The ABCs of floral homeotic genes. Cell. 1994 Jul 29;78(2):203–209. doi: 10.1016/0092-8674(94)90291-7. [DOI] [PubMed] [Google Scholar]
  23. Wolberger C., Vershon A. K., Liu B., Johnson A. D., Pabo C. O. Crystal structure of a MAT alpha 2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. Cell. 1991 Nov 1;67(3):517–528. doi: 10.1016/0092-8674(91)90526-5. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES