Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Nov;4(11):2335–2340. doi: 10.1002/pro.5560041111

Modeling of the structure of the Haemophilus influenzae heme-binding protein suggests a mode of heme interaction.

P Dunten 1, S L Mowbray 1
PMCID: PMC2143024  PMID: 8563630

Abstract

The structure and function of the periplasmic heme-binding protein HbpA of Haemophilus influenzae were investigated. This protein is involved in the import of heme into the bacteria through the inner membrane, and thus is a key element of the organism's ability to survive in blood. A high degree of sequence similarity between HbpA and the dipeptide-binding protein of Escherichia coli is suggested to be the result of a functional relationship. An HbpA model built using the dipeptide-binding protein suggests a mode of heme binding that is distinct from those known in proteins of the human host. These results provide a starting point for rational drug design.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abouhamad W. N., Manson M. D. The dipeptide permease of Escherichia coli closely resembles other bacterial transport systems and shows growth-phase-dependent expression. Mol Microbiol. 1994 Dec;14(5):1077–1092. doi: 10.1111/j.1365-2958.1994.tb01340.x. [DOI] [PubMed] [Google Scholar]
  2. Abouhamad W. N., Manson M., Gibson M. M., Higgins C. F. Peptide transport and chemotaxis in Escherichia coli and Salmonella typhimurium: characterization of the dipeptide permease (Dpp) and the dipeptide-binding protein. Mol Microbiol. 1991 May;5(5):1035–1047. doi: 10.1111/j.1365-2958.1991.tb01876.x. [DOI] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Björkman A. J., Binnie R. A., Cole L. B., Zhang H., Hermodson M. A., Mowbray S. L. Identical mutations at corresponding positions in two homologous proteins with nonidentical effects. J Biol Chem. 1994 Apr 15;269(15):11196–11200. [PubMed] [Google Scholar]
  5. Chothia C., Lesk A. M. The relation between the divergence of sequence and structure in proteins. EMBO J. 1986 Apr;5(4):823–826. doi: 10.1002/j.1460-2075.1986.tb04288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cope L. D., Thomas S. E., Latimer J. L., Slaughter C. A., Müller-Eberhard U., Hansen E. J. The 100 kDa haem:haemopexin-binding protein of Haemophilus influenzae: structure and localization. Mol Microbiol. 1994 Sep;13(5):863–873. doi: 10.1111/j.1365-2958.1994.tb00478.x. [DOI] [PubMed] [Google Scholar]
  7. Dunten P., Mowbray S. L. Crystal structure of the dipeptide binding protein from Escherichia coli involved in active transport and chemotaxis. Protein Sci. 1995 Nov;4(11):2327–2334. doi: 10.1002/pro.5560041110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guyer C. A., Morgan D. G., Osheroff N., Staros J. V. Purification and characterization of a periplasmic oligopeptide binding protein from Escherichia coli. J Biol Chem. 1985 Sep 5;260(19):10812–10818. [PubMed] [Google Scholar]
  9. Hanson M. S., Hansen E. J. Molecular cloning, partial purification, and characterization of a haemin-binding lipoprotein from Haemophilus influenzae type b. Mol Microbiol. 1991 Feb;5(2):267–278. doi: 10.1111/j.1365-2958.1991.tb02107.x. [DOI] [PubMed] [Google Scholar]
  10. Hanson M. S., Slaughter C., Hansen E. J. The hbpA gene of Haemophilus influenzae type b encodes a heme-binding lipoprotein conserved among heme-dependent Haemophilus species. Infect Immun. 1992 Jun;60(6):2257–2266. doi: 10.1128/iai.60.6.2257-2266.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Manson M. D., Blank V., Brade G., Higgins C. F. Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease. Nature. 1986 May 15;321(6067):253–256. doi: 10.1038/321253a0. [DOI] [PubMed] [Google Scholar]
  12. Mowbray S. L. Ribose and glucose-galactose receptors. Competitors in bacterial chemotaxis. J Mol Biol. 1992 Sep 20;227(2):418–440. doi: 10.1016/0022-2836(92)90898-t. [DOI] [PubMed] [Google Scholar]
  13. Olson E. R., Dunyak D. S., Jurss L. M., Poorman R. A. Identification and characterization of dppA, an Escherichia coli gene encoding a periplasmic dipeptide transport protein. J Bacteriol. 1991 Jan;173(1):234–244. doi: 10.1128/jb.173.1.234-244.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
  15. Tame J. R., Murshudov G. N., Dodson E. J., Neil T. K., Dodson G. G., Higgins C. F., Wilkinson A. J. The structural basis of sequence-independent peptide binding by OppA protein. Science. 1994 Jun 10;264(5165):1578–1581. doi: 10.1126/science.8202710. [DOI] [PubMed] [Google Scholar]
  16. de Pina K., Navarro C., McWalter L., Boxer D. H., Price N. C., Kelly S. M., Mandrand-Berthelot M. A., Wu L. F. Purification and characterization of the periplasmic nickel-binding protein NikA of Escherichia coli K12. Eur J Biochem. 1995 Feb 1;227(3):857–865. doi: 10.1111/j.1432-1033.1995.tb20211.x. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES