Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Dec;4(12):2605–2615. doi: 10.1002/pro.5560041218

Structural and dynamic characterization of the urea denatured state of the immunoglobulin binding domain of streptococcal protein G by multidimensional heteronuclear NMR spectroscopy.

M K Frank 1, G M Clore 1, A M Gronenborn 1
PMCID: PMC2143036  PMID: 8580852

Abstract

The structure and dynamics of the urea-denatured B1 immunoglobulin binding domain of streptococcal protein G (GB1) has been investigated by multidimensional heteronuclear NMR spectroscopy. Complete 1H, 15N, and 13C assignments are obtained by means of sequential through-bond correlations. The nuclear Overhauser enhancement, chemical shift, and 3JHN alpha coupling constant data provide no evidence for the existence of any significant population of residual native or nonnative ordered structure. 15N relaxation measurements at 500 and 600 MHz, however, provide evidence for conformationally restricted motions in three regions of the polypeptide that correspond to the second beta-hairpin, the N-terminus of the alpha-helix, and the middle of the alpha-helix in the native protein. The time scale of these motions is longer than the apparent overall correlation time (approximately 3 ns) and could range from about 6 ns in the case of one model to between 4 microseconds and 2 ms in another; it is not possible to distinguish between these two cases with certainty because the dynamics are highly complex and hence the analysis of the time scale of this slower motion is highly model dependent. It is suggested that these three regions may correspond to nucleation sites for the folding of the GB1 domain. With the exception of the N- and C-termini, where end effects predominate, the amplitude of the subnanosecond motions, on the other hand, are fairly uniform and model independent, with an overall order parameter S2 ranging from 0.4 to 0.5.

Full Text

The Full Text of this article is available as a PDF (1,000.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achari A., Hale S. P., Howard A. J., Clore G. M., Gronenborn A. M., Hardman K. D., Whitlow M. 1.67-A X-ray structure of the B2 immunoglobulin-binding domain of streptococcal protein G and comparison to the NMR structure of the B1 domain. Biochemistry. 1992 Nov 3;31(43):10449–10457. doi: 10.1021/bi00158a006. [DOI] [PubMed] [Google Scholar]
  2. Akke M., Skelton N. J., Kördel J., Palmer A. G., 3rd, Chazin W. J. Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N NMR relaxation. Biochemistry. 1993 Sep 21;32(37):9832–9844. doi: 10.1021/bi00088a039. [DOI] [PubMed] [Google Scholar]
  3. Alexander P., Orban J., Bryan P. Kinetic analysis of folding and unfolding the 56 amino acid IgG-binding domain of streptococcal protein G. Biochemistry. 1992 Aug 18;31(32):7243–7248. doi: 10.1021/bi00147a006. [DOI] [PubMed] [Google Scholar]
  4. Alexandrescu A. T., Abeygunawardana C., Shortle D. Structure and dynamics of a denatured 131-residue fragment of staphylococcal nuclease: a heteronuclear NMR study. Biochemistry. 1994 Feb 8;33(5):1063–1072. doi: 10.1021/bi00171a004. [DOI] [PubMed] [Google Scholar]
  5. Alexandrescu A. T., Shortle D. Backbone dynamics of a highly disordered 131 residue fragment of staphylococcal nuclease. J Mol Biol. 1994 Sep 30;242(4):527–546. doi: 10.1006/jmbi.1994.1598. [DOI] [PubMed] [Google Scholar]
  6. Barchi J. J., Jr, Grasberger B., Gronenborn A. M., Clore G. M. Investigation of the backbone dynamics of the IgG-binding domain of streptococcal protein G by heteronuclear two-dimensional 1H-15N nuclear magnetic resonance spectroscopy. Protein Sci. 1994 Jan;3(1):15–21. doi: 10.1002/pro.5560030103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bax A., Vuister G. W., Grzesiek S., Delaglio F., Wang A. C., Tschudin R., Zhu G. Measurement of homo- and heteronuclear J couplings from quantitative J correlation. Methods Enzymol. 1994;239:79–105. doi: 10.1016/s0076-6879(94)39004-5. [DOI] [PubMed] [Google Scholar]
  8. Blanco F. J., Jiménez M. A., Pineda A., Rico M., Santoro J., Nieto J. L. NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like beta-hairpin formation. Biochemistry. 1994 May 17;33(19):6004–6014. doi: 10.1021/bi00185a041. [DOI] [PubMed] [Google Scholar]
  9. Blanco F. J., Rivas G., Serrano L. A short linear peptide that folds into a native stable beta-hairpin in aqueous solution. Nat Struct Biol. 1994 Sep;1(9):584–590. doi: 10.1038/nsb0994-584. [DOI] [PubMed] [Google Scholar]
  10. Blanco F. J., Serrano L. Folding of protein G B1 domain studied by the conformational characterization of fragments comprising its secondary structure elements. Eur J Biochem. 1995 Jun 1;230(2):634–649. doi: 10.1111/j.1432-1033.1995.tb20605.x. [DOI] [PubMed] [Google Scholar]
  11. Clore G. M., Gronenborn A. M. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Methods Enzymol. 1994;239:349–363. doi: 10.1016/s0076-6879(94)39013-4. [DOI] [PubMed] [Google Scholar]
  12. Clore G. M., Gronenborn A. M. Structures of larger proteins in solution: three- and four-dimensional heteronuclear NMR spectroscopy. Science. 1991 Jun 7;252(5011):1390–1399. doi: 10.1126/science.2047852. [DOI] [PubMed] [Google Scholar]
  13. Farrow N. A., Zhang O., Forman-Kay J. D., Kay L. E. Comparison of the backbone dynamics of a folded and an unfolded SH3 domain existing in equilibrium in aqueous buffer. Biochemistry. 1995 Jan 24;34(3):868–878. doi: 10.1021/bi00003a021. [DOI] [PubMed] [Google Scholar]
  14. Gallagher T., Alexander P., Bryan P., Gilliland G. L. Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. Biochemistry. 1994 Apr 19;33(15):4721–4729. [PubMed] [Google Scholar]
  15. Gronenborn A. M., Clore G. M. Identification of the contact surface of a streptococcal protein G domain complexed with a human Fc fragment. J Mol Biol. 1993 Oct 5;233(3):331–335. doi: 10.1006/jmbi.1993.1514. [DOI] [PubMed] [Google Scholar]
  16. Kay L. E., Torchia D. A., Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry. 1989 Nov 14;28(23):8972–8979. doi: 10.1021/bi00449a003. [DOI] [PubMed] [Google Scholar]
  17. Kuszewski J., Clore G. M., Gronenborn A. M. Fast folding of a prototypic polypeptide: the immunoglobulin binding domain of streptococcal protein G. Protein Sci. 1994 Nov;3(11):1945–1952. doi: 10.1002/pro.5560031106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kördel J., Skelton N. J., Akke M., Palmer A. G., 3rd, Chazin W. J. Backbone dynamics of calcium-loaded calbindin D9k studied by two-dimensional proton-detected 15N NMR spectroscopy. Biochemistry. 1992 May 26;31(20):4856–4866. doi: 10.1021/bi00135a017. [DOI] [PubMed] [Google Scholar]
  19. Lumb K. J., Kim P. S. Formation of a hydrophobic cluster in denatured bovine pancreatic trypsin inhibitor. J Mol Biol. 1994 Feb 18;236(2):412–420. doi: 10.1006/jmbi.1994.1153. [DOI] [PubMed] [Google Scholar]
  20. Neri D., Billeter M., Wider G., Wüthrich K. NMR determination of residual structure in a urea-denatured protein, the 434-repressor. Science. 1992 Sep 11;257(5076):1559–1563. doi: 10.1126/science.1523410. [DOI] [PubMed] [Google Scholar]
  21. Neri D., Wider G., Wüthrich K. 1H, 15N and 13C NMR assignments of the 434 repressor fragments 1-63 and 44-63 unfolded in 7 M urea. FEBS Lett. 1992 Jun 1;303(2-3):129–135. doi: 10.1016/0014-5793(92)80504-a. [DOI] [PubMed] [Google Scholar]
  22. Neri D., Wider G., Wüthrich K. Complete 15N and 1H NMR assignments for the amino-terminal domain of the phage 434 repressor in the urea-unfolded form. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4397–4401. doi: 10.1073/pnas.89.10.4397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Powers R., Clore G. M., Stahl S. J., Wingfield P. T., Gronenborn A. Analysis of the backbone dynamics of the ribonuclease H domain of the human immunodeficiency virus reverse transcriptase using 15N relaxation measurements. Biochemistry. 1992 Sep 29;31(38):9150–9157. doi: 10.1021/bi00153a006. [DOI] [PubMed] [Google Scholar]
  24. Shortle D., Abeygunawardana C. NMR analysis of the residual structure in the denatured state of an unusual mutant of staphylococcal nuclease. Structure. 1993 Oct 15;1(2):121–134. doi: 10.1016/0969-2126(93)90027-e. [DOI] [PubMed] [Google Scholar]
  25. Stockman B. J., Euvrard A., Scahill T. A. Heteronuclear three-dimensional NMR spectroscopy of a partially denatured protein: the A-state of human ubiquitin. J Biomol NMR. 1993 May;3(3):285–296. doi: 10.1007/BF00212515. [DOI] [PubMed] [Google Scholar]
  26. Wang A. C., Lodi P. J., Qin J., Vuister G. W., Gronenborn A. M., Clore G. M. An efficient triple-resonance experiment for proton-directed sequential backbone assignment of medium-sized proteins. J Magn Reson B. 1994 Oct;105(2):196–198. doi: 10.1006/jmrb.1994.1123. [DOI] [PubMed] [Google Scholar]
  27. Wishart D. S., Bigam C. G., Holm A., Hodges R. S., Sykes B. D. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR. 1995 Jan;5(1):67–81. doi: 10.1007/BF00227471. [DOI] [PubMed] [Google Scholar]
  28. Zhang O., Kay L. E., Olivier J. P., Forman-Kay J. D. Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J Biomol NMR. 1994 Nov;4(6):845–858. doi: 10.1007/BF00398413. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES