Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Dec;4(12):2469–2477. doi: 10.1002/pro.5560041203

N-acetyl-beta-D-glucopyranosylamine: a potent T-state inhibitor of glycogen phosphorylase. A comparison with alpha-D-glucose.

N G Oikonomakos 1, M Kontou 1, S E Zographos 1, K A Watson 1, L N Johnson 1, C J Bichard 1, G W Fleet 1, K R Acharya 1
PMCID: PMC2143045  PMID: 8580837

Abstract

Structure-based drug design has led to the discovery of a number of glucose analogue inhibitors of glycogen phosphorylase that have an increased affinity compared to alpha-D-glucose (Ki = 1.7 mM). The best inhibitor in the class of N-acyl derivatives of beta-D-glucopyranosylamine, N-acetyl-beta-D-glucopyranosylamine (1-GlcNAc), has been characterized by kinetic, ultracentrifugation, and crystallographic studies. 1-GlcNAc acts as a competitive inhibitor for both the b (Ki = 32 microM) and the a (Ki = 35 microM) forms of the enzyme with respect to glucose 1-phosphate and in synergism with caffeine, mimicking the binding of glucose. Sedimentation velocity experiments demonstrated that 1-GlcNAc was able to induce dissociation of tetrameric phosphorylase a and stabilization of the dimeric T-state conformation. Co-crystals of the phosphorylase b-1-GlcNAc-IMP complex were grown in space group P4(3)2(1)2, with native-like unit cell dimensions, and the complex structure has been refined to give a crystallographic R factor of 18.1%, for data between 8 and 2.3 A resolution. 1-GlcNAc binds tightly at the catalytic site of T-state phosphorylase b at approximately the same position as that of alpha-D-glucose. The ligand can be accommodated in the catalytic site with very little change in the protein structure and stabilizes the T-state conformation of the 280s loop by making several favorable contacts to Asn 284 of this loop. Structural comparisons show that the T-state phosphorylase b-1-GlcNAc-IMP complex structure is overall similar to the T-state phosphorylase b-alpha-D-glucose complex structure. The structure of the 1-GlcNAc complex provides a rational for the biochemical properties of the inhibitor.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alemany S., Cohen P. Phosphorylase a is an allosteric inhibitor of the glycogen and microsomal forms of rat hepatic protein phosphatase-1. FEBS Lett. 1986 Mar 31;198(2):194–202. doi: 10.1016/0014-5793(86)80404-5. [DOI] [PubMed] [Google Scholar]
  2. Barford D., Hu S. H., Johnson L. N. Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. J Mol Biol. 1991 Mar 5;218(1):233–260. doi: 10.1016/0022-2836(91)90887-c. [DOI] [PubMed] [Google Scholar]
  3. Barford D., Johnson L. N. The allosteric transition of glycogen phosphorylase. Nature. 1989 Aug 24;340(6235):609–616. doi: 10.1038/340609a0. [DOI] [PubMed] [Google Scholar]
  4. Barford D., Schwabe J. W., Oikonomakos N. G., Acharya K. R., Hajdu J., Papageorgiou A. C., Martin J. L., Knott J. C., Vasella A., Johnson L. N. Channels at the catalytic site of glycogen phosphorylase b: binding and kinetic studies with the beta-glycosidase inhibitor D-gluconohydroximo-1,5-lactone N-phenylurethane. Biochemistry. 1988 Sep 6;27(18):6733–6741. doi: 10.1021/bi00418a014. [DOI] [PubMed] [Google Scholar]
  5. Bollen M., Stalmans W. The structure, role, and regulation of type 1 protein phosphatases. Crit Rev Biochem Mol Biol. 1992;27(3):227–281. doi: 10.3109/10409239209082564. [DOI] [PubMed] [Google Scholar]
  6. Carabaza A., Ciudad C. J., Baqué S., Guinovart J. J. Glucose has to be phosphorylated to activate glycogen synthase, but not to inactivate glycogen phosphorylase in hepatocytes. FEBS Lett. 1992 Jan 20;296(2):211–214. doi: 10.1016/0014-5793(92)80381-p. [DOI] [PubMed] [Google Scholar]
  7. Cohen P., Duewer T., Fischer E. H. Phosphorylase from dogfish skeletal muscle. Purification and a comparison of its physical properties to those of rabbit muscle phosphorylase. Biochemistry. 1971 Jul 6;10(14):2683–2694. doi: 10.1021/bi00790a005. [DOI] [PubMed] [Google Scholar]
  8. Cohen P. The subunit structure of rabbit-skeletal-muscle phosphorylase kinase, and the molecular basis of its activation reactions. Eur J Biochem. 1973 Apr 2;34(1):1–14. doi: 10.1111/j.1432-1033.1973.tb02721.x. [DOI] [PubMed] [Google Scholar]
  9. DeFronzo R. A. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988 Jun;37(6):667–687. doi: 10.2337/diab.37.6.667. [DOI] [PubMed] [Google Scholar]
  10. Fletterick R. J., Sygusch J., Murray N., Madsen N. B. Low-resolution structure of the glycogen phosphorylase alpha monomer and comparison with phosphorylase beta. J Mol Biol. 1976 May 5;103(1):1–13. doi: 10.1016/0022-2836(76)90048-6. [DOI] [PubMed] [Google Scholar]
  11. HELMREICH E., CORI C. F. THE ROLE OF ADENYLIC ACID IN THE ACTIVATION OF PHOSPHORYLASE. Proc Natl Acad Sci U S A. 1964 Jan;51:131–138. doi: 10.1073/pnas.51.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hartmann H., Probst I., Jungermann K., Creutzfeldt W. Inhibition of glycogenolysis and glycogen phosphorylase by insulin and proinsulin in rat hepatocyte cultures. Diabetes. 1987 May;36(5):551–555. doi: 10.2337/diab.36.5.551. [DOI] [PubMed] [Google Scholar]
  13. Helmreich E., Michaelides M. C., Cori C. F. Effects of substrates and a substrate analog on the binding of 5'-adenylic acid to muscle phosphorylase a. Biochemistry. 1967 Dec;6(12):3695–3710. doi: 10.1021/bi00864a012. [DOI] [PubMed] [Google Scholar]
  14. Hers H. G. The control of glycogen metabolism in the liver. Annu Rev Biochem. 1976;45:167–189. doi: 10.1146/annurev.bi.45.070176.001123. [DOI] [PubMed] [Google Scholar]
  15. Jones T. A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol. 1985;115:157–171. doi: 10.1016/0076-6879(85)15014-7. [DOI] [PubMed] [Google Scholar]
  16. Kastenschmidt L. L., Kastenschmidt J., Helmreich E. Subunit interactions and their relationship to the allosteric properties of rabbit skeletal muscle phosphorylase b. Biochemistry. 1968 Oct;7(10):3590–3608. doi: 10.1021/bi00850a037. [DOI] [PubMed] [Google Scholar]
  17. Kasvinsky P. J., Shechosky S., Fletterick R. J. Synergistic regulation of phosphorylase a by glucose and caffeine. J Biol Chem. 1978 Dec 25;253(24):9102–9106. [PubMed] [Google Scholar]
  18. MADSEN N. B. The inhibition of glycogen phosphorylase by uridine diphosphate glucose. Biochem Biophys Res Commun. 1961 Nov 29;6:310–312. doi: 10.1016/0006-291x(61)90385-0. [DOI] [PubMed] [Google Scholar]
  19. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  20. Madsen N. B., KasvinskyPJ, Fletterick R. J. Allosteric transitions of phosphorylase a and the regulation of glycogen metabolism. J Biol Chem. 1978 Dec 25;253(24):9097–9101. [PubMed] [Google Scholar]
  21. Madsen N. B., Shechosky S., Fletterick R. J. Site-site interactions in glycogen phosphorylase b probed by ligands specific for each site. Biochemistry. 1983 Sep 13;22(19):4460–4465. doi: 10.1021/bi00288a017. [DOI] [PubMed] [Google Scholar]
  22. Martin J. L., Johnson L. N., Withers S. G. Comparison of the binding of glucose and glucose 1-phosphate derivatives to T-state glycogen phosphorylase b. Biochemistry. 1990 Dec 4;29(48):10745–10757. doi: 10.1021/bi00500a005. [DOI] [PubMed] [Google Scholar]
  23. Martin J. L., Veluraja K., Ross K., Johnson L. N., Fleet G. W., Ramsden N. G., Bruce I., Orchard M. G., Oikonomakos N. G., Papageorgiou A. C. Glucose analogue inhibitors of glycogen phosphorylase: the design of potential drugs for diabetes. Biochemistry. 1991 Oct 22;30(42):10101–10116. doi: 10.1021/bi00106a006. [DOI] [PubMed] [Google Scholar]
  24. Massillon D., Bollen M., De Wulf H., Overloop K., Vanstapel F., Van Hecke P., Stalmans W. Demonstration of a glycogen/glucose 1-phosphate cycle in hepatocytes from fasted rats. Selective inactivation of phosphorylase by 2-deoxy-2-fluoro-alpha-D-glucopyranosyl fluoride. J Biol Chem. 1995 Aug 18;270(33):19351–19356. doi: 10.1074/jbc.270.33.19351. [DOI] [PubMed] [Google Scholar]
  25. Mateo P. L., Baron C., Lopez-Mayorga O., Jimenez J. S., Cortijo M. AMP and IMP binding to glycogen phosphorylase b. A calorimetric and equilibrium dialysis study. J Biol Chem. 1984 Aug 10;259(15):9384–9389. [PubMed] [Google Scholar]
  26. Melpidou A. E., Oikonomakos N. G. Effect of glucose-6-P on the catalytic and structural properties of glycogen phosphorylase a. FEBS Lett. 1983 Apr 5;154(1):105–110. doi: 10.1016/0014-5793(83)80884-9. [DOI] [PubMed] [Google Scholar]
  27. Oikonomakos N. G., Acharya K. R., Stuart D. I., Melpidou A. E., McLaughlin P. J., Johnson L. N. Uridine(5')diphospho(1)-alpha-D-glucose. A binding study to glycogen phosphorylase b in the crystal. Eur J Biochem. 1988 May 2;173(3):569–578. doi: 10.1111/j.1432-1033.1988.tb14037.x. [DOI] [PubMed] [Google Scholar]
  28. Oikonomakos N. G., Kontou M., Zographos S. E., Tsitoura H. S., Johnson L. N., Watson K. A., Mitchell E. P., Fleet G. W., Son J. C., Bichard C. J. The design of potential antidiabetic drugs: experimental investigation of a number of beta-D-glucose analogue inhibitors of glycogen phosphorylase. Eur J Drug Metab Pharmacokinet. 1994 Jul-Sep;19(3):185–192. doi: 10.1007/BF03188920. [DOI] [PubMed] [Google Scholar]
  29. Papageorgiou A. C., Oikonomakos N. G., Leonidas D. D., Bernet B., Beer D., Vasella A. The binding of D-gluconohydroximo-1,5-lactone to glycogen phosphorylase. Kinetic, ultracentrifugation and crystallographic studies. Biochem J. 1991 Mar 1;274(Pt 2):329–338. doi: 10.1042/bj2740329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Papageorgiou A. C., Oikonomakos N. G., Leonidas D. D. Inhibition of rabbit muscle glycogen phosphorylase by D-gluconohydroximo-1,5-lactone-N-phenylurethane. Arch Biochem Biophys. 1989 Aug 1;272(2):376–385. doi: 10.1016/0003-9861(89)90231-2. [DOI] [PubMed] [Google Scholar]
  31. Rao S. T., Sundaralingam M. Stereochemistry of nucleic acids and their constituents. V. The crystal and molecular structure of a hydrated monosodium inosine 5'-phosphate. A commonly occurring unusual nucleotide in the anticodons of tRNA. J Am Chem Soc. 1969 Feb 26;91(5):1210–1217. doi: 10.1021/ja01033a031. [DOI] [PubMed] [Google Scholar]
  32. Sprang S., Fletterick R., Stern M., Yang D., Madsen N., Sturtevant J. Analysis of an allosteric binding site: the nucleoside inhibitor site of phosphorylase alpha. Biochemistry. 1982 Apr 27;21(9):2036–2048. doi: 10.1021/bi00538a010. [DOI] [PubMed] [Google Scholar]
  33. Sriram M., Liaw Y. C., Gao Y. G., Wang A. H. Comparison of two hydrated forms of sodium inosine 5'-monophosphate. Acta Crystallogr C. 1991 Mar 15;47(Pt 3):507–510. doi: 10.1107/s0108270190008939. [DOI] [PubMed] [Google Scholar]
  34. Stalmans W., De Wulf H., Hue L., Hers H. G. The sequential inactivation of glycogen phosphorylase and activation of glycogen synthetase in liver after the administration of glucose to mice and rats. The mechanism of the hepatic threshold to glucose. Eur J Biochem. 1974 Jan 3;41(1):127–134. doi: 10.1111/j.1432-1033.1974.tb03252.x. [DOI] [PubMed] [Google Scholar]
  35. WANG J. H., SHONKA M. L., GRAVES D. J. THE EFFECT OF GLUCOSE ON THE SEDIMENTATION AND CATALYTIC ACTIVITY OF GLYCOGEN PHOSPHORYLASE. Biochem Biophys Res Commun. 1965 Jan 4;18:131–135. doi: 10.1016/0006-291x(65)90895-8. [DOI] [PubMed] [Google Scholar]
  36. Watson K. A., Mitchell E. P., Johnson L. N., Cruciani G., Son J. C., Bichard C. J., Fleet G. W., Oikonomakos N. G., Kontou M., Zographos S. E. Glucose analogue inhibitors of glycogen phosphorylase: from crystallographic analysis to drug prediction using GRID force-field and GOLPE variable selection. Acta Crystallogr D Biol Crystallogr. 1995 Jul 1;51(Pt 4):458–472. doi: 10.1107/S090744499401348X. [DOI] [PubMed] [Google Scholar]
  37. Watson K. A., Mitchell E. P., Johnson L. N., Son J. C., Bichard C. J., Orchard M. G., Fleet G. W., Oikonomakos N. G., Leonidas D. D., Kontou M. Design of inhibitors of glycogen phosphorylase: a study of alpha- and beta-C-glucosides and 1-thio-beta-D-glucose compounds. Biochemistry. 1994 May 17;33(19):5745–5758. doi: 10.1021/bi00185a011. [DOI] [PubMed] [Google Scholar]
  38. Wera S., Bollen M., Stalmans W. Purification and characterization of the glycogen-bound protein phosphatase from rat liver. J Biol Chem. 1991 Jan 5;266(1):339–345. [PubMed] [Google Scholar]
  39. Withers S. G., Madsen N. B., Sykes B. D. Active form of pyridoxal phosphate in glycogen phosphorylase. Phosphorus-31 nuclear magentic resonance investigation. Biochemistry. 1981 Mar 31;20(7):1748–1756. doi: 10.1021/bi00510a007. [DOI] [PubMed] [Google Scholar]
  40. Withers S. G., Madsen N. B., Sykes B. D. Covalently activated glycogen phosphorylase: a phosphorus-31 nuclear magnetic resonance and ultracentrifugation analysis. Biochemistry. 1982 Dec 21;21(26):6716–6722. doi: 10.1021/bi00269a016. [DOI] [PubMed] [Google Scholar]
  41. Withers S. G. Pyridoxal(5')diphospho(1)-alpha-D-glucose. A potent R-state inhibitor of glycogen phosphorylase. J Biol Chem. 1985 Jan 25;260(2):841–845. [PubMed] [Google Scholar]
  42. Withers S. G., Sykes B. D., Madsen N. B., Kasvinsky P. J. Identical structural changes induced in glycogen phosphorylase by two nonexclusive allosteric inhibitors. Biochemistry. 1979 Nov 27;18(24):5342–5348. doi: 10.1021/bi00591a013. [DOI] [PubMed] [Google Scholar]
  43. Witters L. A., Avruch J. Insulin regulation of hepatic glycogen synthase and phosphorylase. Biochemistry. 1978 Feb 7;17(3):406–410. doi: 10.1021/bi00596a004. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES