Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Dec;4(12):2478–2486. doi: 10.1002/pro.5560041204

Phosphorylation of serine-46 in HPr, a key regulatory protein in bacteria, results in stabilization of its solution structure.

K Pullen 1, P Rajagopal 1, B R Branchini 1, M E Huffine 1, J Reizer 1, M H Saier Jr 1, J M Scholtz 1, R E Klevit 1
PMCID: PMC2143046  PMID: 8580838

Abstract

The serine-phosphorylated form of histidine-containing protein (HPr), a component of the phosphoenolpyruvate:sugar phosphotransferase system from Bacillus subtilis, has been characterized by NMR spectroscopy and solvent denaturation studies. The results indicate that phosphorylation of Ser 46, the N-cap of alpha-helix-B, does not cause a conformational change but rather stabilizes the helix. Amide proton exchange rates in helix-B are decreased and phosphorylation stabilizes the protein to solvent and thermal denaturation, with a delta delta G of 0.7-0.8 kcal mol-1. A mutant in which Ser 46 is replaced by aspartic acid shows a similar stabilization, indicating that an electrostatic interaction between the negatively charged groups and the helix macrodipole contributes significantly to the stabilization.

Full Text

The Full Text of this article is available as a PDF (7.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bai Y., Milne J. S., Mayne L., Englander S. W. Primary structure effects on peptide group hydrogen exchange. Proteins. 1993 Sep;17(1):75–86. doi: 10.1002/prot.340170110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barford D., Johnson L. N. The allosteric transition of glycogen phosphorylase. Nature. 1989 Aug 24;340(6235):609–616. doi: 10.1038/340609a0. [DOI] [PubMed] [Google Scholar]
  3. Bash P. A., Pattabiraman N., Huang C., Ferrin T. E., Langridge R. Van der waals surfaces in molecular modeling: implementation with real-time computer graphics. Science. 1983 Dec 23;222(4630):1325–1327. doi: 10.1126/science.222.4630.1325. [DOI] [PubMed] [Google Scholar]
  4. Becktel W. J., Schellman J. A. Protein stability curves. Biopolymers. 1987 Nov;26(11):1859–1877. doi: 10.1002/bip.360261104. [DOI] [PubMed] [Google Scholar]
  5. Chen Y., Reizer J., Saier M. H., Jr, Fairbrother W. J., Wright P. E. Mapping of the binding interfaces of the proteins of the bacterial phosphotransferase system, HPr and IIAglc. Biochemistry. 1993 Jan 12;32(1):32–37. doi: 10.1021/bi00052a006. [DOI] [PubMed] [Google Scholar]
  6. Cox S., Radzio-Andzelm E., Taylor S. S. Domain movements in protein kinases. Curr Opin Struct Biol. 1994 Dec;4(6):893–901. doi: 10.1016/0959-440x(94)90272-0. [DOI] [PubMed] [Google Scholar]
  7. Deutscher J., Küster E., Bergstedt U., Charrier V., Hillen W. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol Microbiol. 1995 Mar;15(6):1049–1053. doi: 10.1111/j.1365-2958.1995.tb02280.x. [DOI] [PubMed] [Google Scholar]
  8. Deutscher J., Reizer J., Fischer C., Galinier A., Saier M. H., Jr, Steinmetz M. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. J Bacteriol. 1994 Jun;176(11):3336–3344. doi: 10.1128/jb.176.11.3336-3344.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dieckmann T., Mitschang L., Hofmann M., Kos J., Turk V., Auerswald E. A., Jaenicke R., Oschkinat H. The structures of native phosphorylated chicken cystatin and of a recombinant unphosphorylated variant in solution. J Mol Biol. 1993 Dec 20;234(4):1048–1059. doi: 10.1006/jmbi.1993.1658. [DOI] [PubMed] [Google Scholar]
  10. Herzberg O., Reddy P., Sutrina S., Saier M. H., Jr, Reizer J., Kapadia G. Structure of the histidine-containing phosphocarrier protein HPr from Bacillus subtilis at 2.0-A resolution. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2499–2503. doi: 10.1073/pnas.89.6.2499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hol W. G. The role of the alpha-helix dipole in protein function and structure. Prog Biophys Mol Biol. 1985;45(3):149–195. doi: 10.1016/0079-6107(85)90001-x. [DOI] [PubMed] [Google Scholar]
  12. Hol W. G., van Duijnen P. T., Berendsen H. J. The alpha-helix dipole and the properties of proteins. Nature. 1978 Jun 8;273(5662):443–446. doi: 10.1038/273443a0. [DOI] [PubMed] [Google Scholar]
  13. Huang C. C., Pettersen E. F., Klein T. E., Ferrin T. E., Langridge R. Conic: a fast renderer for space-filling molecules with shadows. J Mol Graph. 1991 Dec;9(4):230-6, 242. doi: 10.1016/0263-7855(91)80016-s. [DOI] [PubMed] [Google Scholar]
  14. KREBS E. G., FISCHER E. H. The phosphorylase b to a converting enzyme of rabbit skeletal muscle. Biochim Biophys Acta. 1956 Apr;20(1):150–157. doi: 10.1016/0006-3002(56)90273-6. [DOI] [PubMed] [Google Scholar]
  15. Liao D. I., Herzberg O. Refined structures of the active Ser83-->Cys and impaired Ser46-->Asp histidine-containing phosphocarrier proteins. Structure. 1994 Dec 15;2(12):1203–1216. doi: 10.1016/s0969-2126(94)00122-7. [DOI] [PubMed] [Google Scholar]
  16. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  17. Postma P. W., Lengeler J. W., Jacobson G. R. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev. 1993 Sep;57(3):543–594. doi: 10.1128/mr.57.3.543-594.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rajagopal P., Waygood E. B., Klevit R. E. Structural consequences of histidine phosphorylation: NMR characterization of the phosphohistidine form of histidine-containing protein from Bacillus subtilis and Escherichia coli. Biochemistry. 1994 Dec 27;33(51):15271–15282. doi: 10.1021/bi00255a008. [DOI] [PubMed] [Google Scholar]
  19. Reizer J., Novotny M. J., Hengstenberg W., Saier M. H., Jr Properties of ATP-dependent protein kinase from Streptococcus pyogenes that phosphorylates a seryl residue in HPr, a phosphocarrier protein of the phosphotransferase system. J Bacteriol. 1984 Oct;160(1):333–340. doi: 10.1128/jb.160.1.333-340.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reizer J., Sutrina S. L., Wu L. F., Deutscher J., Reddy P., Saier M. H., Jr Functional interactions between proteins of the phosphoenolpyruvate:sugar phosphotransferase systems of Bacillus subtilis and Escherichia coli. J Biol Chem. 1992 May 5;267(13):9158–9169. [PubMed] [Google Scholar]
  21. Scholtz J. M. Conformational stability of HPr: the histidine-containing phosphocarrier protein from Bacillus subtilis. Protein Sci. 1995 Jan;4(1):35–43. doi: 10.1002/pro.5560040106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spera S., Ikura M., Bax A. Measurement of the exchange rates of rapidly exchanging amide protons: application to the study of calmodulin and its complex with a myosin light chain kinase fragment. J Biomol NMR. 1991 Jul;1(2):155–165. doi: 10.1007/BF01877227. [DOI] [PubMed] [Google Scholar]
  23. Wand A. J., Roder H., Englander S. W. Two-dimensional 1H NMR studies of cytochrome c: hydrogen exchange in the N-terminal helix. Biochemistry. 1986 Mar 11;25(5):1107–1114. doi: 10.1021/bi00353a025. [DOI] [PubMed] [Google Scholar]
  24. Wittekind M., Rajagopal P., Branchini B. R., Reizer J., Saier M. H., Jr, Klevit R. E. Solution structure of the phosphocarrier protein HPr from Bacillus subtilis by two-dimensional NMR spectroscopy. Protein Sci. 1992 Oct;1(10):1363–1376. doi: 10.1002/pro.5560011016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wittekind M., Reizer J., Deutscher J., Saier M. H., Klevit R. E. Common structural changes accompany the functional inactivation of HPr by seryl phosphorylation or by serine to aspartate substitution. Biochemistry. 1989 Dec 26;28(26):9908–9912. doi: 10.1021/bi00452a005. [DOI] [PubMed] [Google Scholar]
  26. Wolodko W. T., Fraser M. E., James M. N., Bridger W. A. The crystal structure of succinyl-CoA synthetase from Escherichia coli at 2.5-A resolution. J Biol Chem. 1994 Apr 8;269(14):10883–10890. doi: 10.2210/pdb1scu/pdb. [DOI] [PubMed] [Google Scholar]
  27. Ye J. J., Reizer J., Cui X., Saier M. H., Jr Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr. J Biol Chem. 1994 Apr 22;269(16):11837–11844. [PubMed] [Google Scholar]
  28. Ye J. J., Saier M. H., Jr Purification and characterization of a small membrane-associated sugar phosphate phosphatase that is allosterically activated by HPr(Ser(P)) of the phosphotransferase system in Lactococcus lactis. J Biol Chem. 1995 Jul 14;270(28):16740–16744. doi: 10.1074/jbc.270.28.16740. [DOI] [PubMed] [Google Scholar]
  29. Zheng J., Knighton D. R., ten Eyck L. F., Karlsson R., Xuong N., Taylor S. S., Sowadski J. M. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry. 1993 Mar 9;32(9):2154–2161. doi: 10.1021/bi00060a005. [DOI] [PubMed] [Google Scholar]
  30. van Nuland N. A., Boelens R., Scheek R. M., Robillard G. T. High-resolution structure of the phosphorylated form of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from NMR-NOE data. J Mol Biol. 1995 Feb 10;246(1):180–193. doi: 10.1006/jmbi.1994.0075. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES