Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Dec;4(12):2625–2628. doi: 10.1002/pro.5560041222

Protein recognition of ammonium cations using side-chain aromatics: a structural variation for secondary ammonium ligands.

A R Raine 1, C C Yang 1, L C Packman 1, S A White 1, F S Mathews 1, N S Scrutton 1
PMCID: PMC2143047  PMID: 8580856

Abstract

A model for the structure of dimethylamine dehydrogenase was generated using the crystal coordinates of trimethylamine dehydrogenase. Substrate is bound in trimethylamine dehydrogenase by cation-pi bonding, but modeling of dimethylamine dehydrogenase suggests that secondary amines are bound by a mixture of cation-pi and conventional hydrogen bonding. In dimethylamine dehydrogenase, binding is orientationally more specific and distinct from those proteins that bind tertiary and quaternary amine groups.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker E. N., Hubbard R. E. Hydrogen bonding in globular proteins. Prog Biophys Mol Biol. 1984;44(2):97–179. doi: 10.1016/0079-6107(84)90007-5. [DOI] [PubMed] [Google Scholar]
  2. Bellamy H. D., Lim L. W., Mathews F. S., Dunham W. R. Studies of crystalline trimethylamine dehydrogenase in three oxidation states and in the presence of substrate and inhibitor. J Biol Chem. 1989 Jul 15;264(20):11887–11892. [PubMed] [Google Scholar]
  3. Burley S. K., Petsko G. A. Amino-aromatic interactions in proteins. FEBS Lett. 1986 Jul 28;203(2):139–143. doi: 10.1016/0014-5793(86)80730-x. [DOI] [PubMed] [Google Scholar]
  4. Davies D. R., Metzger H. Structural basis of antibody function. Annu Rev Immunol. 1983;1:87–117. doi: 10.1146/annurev.iy.01.040183.000511. [DOI] [PubMed] [Google Scholar]
  5. Lim L. W., Shamala N., Mathews F. S., Steenkamp D. J., Hamlin R., Xuong N. H. Three-dimensional structure of the iron-sulfur flavoprotein trimethylamine dehydrogenase at 2.4-A resolution. J Biol Chem. 1986 Nov 15;261(32):15140–15146. [PubMed] [Google Scholar]
  6. Raine A. R., Scrutton N. S., Mathews F. S. On the evolution of alternate core packing in eightfold beta/alpha-barrels. Protein Sci. 1994 Oct;3(10):1889–1892. doi: 10.1002/pro.5560031028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rohlfs R. J., Hille R. The reaction of trimethylamine dehydrogenase with diethylmethylamine. J Biol Chem. 1994 Dec 9;269(49):30869–30879. [PubMed] [Google Scholar]
  8. Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
  9. Wilson E. K., Mathews F. S., Packman L. C., Scrutton N. S. Electron tunneling in substrate-reduced trimethylamine dehydrogenase: kinetics of electron transfer and analysis of the tunneling pathway. Biochemistry. 1995 Feb 28;34(8):2584–2591. doi: 10.1021/bi00008a024. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES