Abstract
A new approach to NMR solution structure refinement is introduced that uses paramagnetic effects on nuclear chemical shifts as constraints in energy minimization or molecular dynamics calculations. Chemical shift differences between oxidized and reduced forms of horse cytochrome c for more than 300 protons were used as constraints to refine the structure of the wild-type protein in solution and to define the structural changes induced by a Leu 94 to Val mutation. A single round of constrained minimization, using the crystal structure as the starting point, converged to a low-energy structure with an RMS deviation between calculated and observed pseudo-contact shifts of 0.045 ppm, 7.5-fold lower than the starting structure. At the same time, the procedure provided stereospecific assignments for more than 45 pairs of methylene protons and methyl groups. Structural changes caused by the mutation were determined to a precision of better than 0.3 A. Structure determination based on dipolar paramagnetic (pseudocontact) shifts is applicable to molecules containing anisotropic paramagnetic centers with short electronic relaxation times, including numerous naturally occurring metalloproteins, as well as proteins or nucleic acids to which a paramagnetic metal ion or ligand may be attached. The long range of paramagnetic shift effects (up to 20 A from the iron in the case of cytochrome c) provides global structural constraints, which, in conjunction with conventional NMR distance and dihedral angle constraints, will enhance the precision of NMR solution structure determination.
Full Text
The Full Text of this article is available as a PDF (6.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barry C. D., North A. C., Glasel J. A., Williams R. J., Xavier A. V. Quantitative determination of mononucleotide conformations in solution using lanthanide ion shift and broadenine NMR probes. Nature. 1971 Jul 23;232(5308):236–245. doi: 10.1038/232236a0. [DOI] [PubMed] [Google Scholar]
- Berghuis A. M., Brayer G. D. Oxidation state-dependent conformational changes in cytochrome c. J Mol Biol. 1992 Feb 20;223(4):959–976. doi: 10.1016/0022-2836(92)90255-i. [DOI] [PubMed] [Google Scholar]
- Bushnell G. W., Louie G. V., Brayer G. D. High-resolution three-dimensional structure of horse heart cytochrome c. J Mol Biol. 1990 Jul 20;214(2):585–595. doi: 10.1016/0022-2836(90)90200-6. [DOI] [PubMed] [Google Scholar]
- Clore G. M., Robien M. A., Gronenborn A. M. Exploring the limits of precision and accuracy of protein structures determined by nuclear magnetic resonance spectroscopy. J Mol Biol. 1993 May 5;231(1):82–102. doi: 10.1006/jmbi.1993.1259. [DOI] [PubMed] [Google Scholar]
- Emerson S. D., La Mar G. N. NMR determination of the orientation of the magnetic susceptibility tensor in cyanometmyoglobin: a new probe of steric tilt of bound ligand. Biochemistry. 1990 Feb 13;29(6):1556–1566. doi: 10.1021/bi00458a029. [DOI] [PubMed] [Google Scholar]
- Eriksson A. E., Baase W. A., Zhang X. J., Heinz D. W., Blaber M., Baldwin E. P., Matthews B. W. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science. 1992 Jan 10;255(5041):178–183. doi: 10.1126/science.1553543. [DOI] [PubMed] [Google Scholar]
- Feng Y. Q., Wand A. J., Roder H., Englander S. W. Chemical exchange in two dimensions in the 1H NMR assignment of cytochrome c. Biophys J. 1991 Feb;59(2):323–328. doi: 10.1016/S0006-3495(91)82226-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feng Y., Roder H., Englander S. W. Redox-dependent structure change and hyperfine nuclear magnetic resonance shifts in cytochrome c. Biochemistry. 1990 Apr 10;29(14):3494–3504. doi: 10.1021/bi00466a011. [DOI] [PubMed] [Google Scholar]
- Feng Y., Roder H., Englander S. W., Wand A. J., Di Stefano D. L. Proton resonance assignments of horse ferricytochrome c. Biochemistry. 1989 Jan 10;28(1):195–203. doi: 10.1021/bi00427a027. [DOI] [PubMed] [Google Scholar]
- Fredericks Z. L., Pielak G. J. Exploring the interface between the N- and C-terminal helices of cytochrome c by random mutagenesis within the C-terminal helix. Biochemistry. 1993 Jan 26;32(3):929–936. doi: 10.1021/bi00054a026. [DOI] [PubMed] [Google Scholar]
- Gao Y. A., Boyd J., Pielak G. J., Williams R. J. Comparison of reduced and oxidized yeast iso-1-cytochrome c using proton paramagnetic shifts. Biochemistry. 1991 Feb 19;30(7):1928–1934. doi: 10.1021/bi00221a028. [DOI] [PubMed] [Google Scholar]
- Guiles R. D., Basus V. J., Sarma S., Malpure S., Fox K. M., Kuntz I. D., Waskell L. Novel heteronuclear methods of assignment transfer from a diamagnetic to a paramagnetic protein: application to rat cytochrome b5. Biochemistry. 1993 Aug 17;32(32):8329–8340. doi: 10.1021/bi00083a037. [DOI] [PubMed] [Google Scholar]
- Handel T. M., Williams S. A., DeGrado W. F. Metal ion-dependent modulation of the dynamics of a designed protein. Science. 1993 Aug 13;261(5123):879–885. doi: 10.1126/science.8346440. [DOI] [PubMed] [Google Scholar]
- Hickey D. R., Berghuis A. M., Lafond G., Jaeger J. A., Cardillo T. S., McLendon D., Das G., Sherman F., Brayer G. D., McLendon G. Enhanced thermodynamic stabilities of yeast iso-1-cytochromes c with amino acid replacements at positions 52 and 102. J Biol Chem. 1991 Jun 25;266(18):11686–11694. [PubMed] [Google Scholar]
- Horrocks W. D., Jr, Greenberg E. S. Evaluation of dipolar nuclear magnetic resonance shifts in low-spin hemin systems: ferricytochrome c and metmyoglobin cyanide. Biochim Biophys Acta. 1973 Sep 21;322(1):38–44. doi: 10.1016/0005-2795(73)90172-4. [DOI] [PubMed] [Google Scholar]
- Keller R. M., Wüthrich K. Evolutionary change of the heme c electronic structure: ferricytochrome c-551 from Pseudomonas aeruginosa and horse heart ferricytochrome c. Biochem Biophys Res Commun. 1978 Aug 14;83(3):1132–1139. doi: 10.1016/0006-291x(78)91513-9. [DOI] [PubMed] [Google Scholar]
- Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
- Lee L., Sykes B. D. Use of lanthanide-induced nuclear magnetic resonance shifts for determination of protein structure in solution: EF calcium binding site of carp parvalbumin. Biochemistry. 1983 Sep 13;22(19):4366–4373. doi: 10.1021/bi00288a004. [DOI] [PubMed] [Google Scholar]
- Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
- Michael S. F., Kilfoil V. J., Schmidt M. H., Amann B. T., Berg J. M. Metal binding and folding properties of a minimalist Cys2His2 zinc finger peptide. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4796–4800. doi: 10.1073/pnas.89.11.4796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakai T., Kidera A., Nakamura H. Intrinsic nature of the three-dimensional structure of proteins as determined by distance geometry with good sampling properties. J Biomol NMR. 1993 Jan;3(1):19–40. doi: 10.1007/BF00242473. [DOI] [PubMed] [Google Scholar]
- Qi P. X., Di Stefano D. L., Wand A. J. Solution structure of horse heart ferrocytochrome c determined by high-resolution NMR and restrained simulated annealing. Biochemistry. 1994 May 31;33(21):6408–6417. doi: 10.1021/bi00187a004. [DOI] [PubMed] [Google Scholar]
- Regan L., Clarke N. D. A tetrahedral zinc(II)-binding site introduced into a designed protein. Biochemistry. 1990 Dec 11;29(49):10878–10883. doi: 10.1021/bi00501a003. [DOI] [PubMed] [Google Scholar]
- Robertson D. E., Farid R. S., Moser C. C., Urbauer J. L., Mulholland S. E., Pidikiti R., Lear J. D., Wand A. J., DeGrado W. F., Dutton P. L. Design and synthesis of multi-haem proteins. Nature. 1994 Mar 31;368(6470):425–432. doi: 10.1038/368425a0. [DOI] [PubMed] [Google Scholar]
- Shulman R. G., Glarum S. H., Karplus M. Electronic structure of cyanide complexes of hemes and heme proteins. J Mol Biol. 1971 Apr 14;57(1):93–115. doi: 10.1016/0022-2836(71)90121-5. [DOI] [PubMed] [Google Scholar]
- Takano T., Dickerson R. E. Conformation change of cytochrome c. I. Ferrocytochrome c structure refined at 1.5 A resolution. J Mol Biol. 1981 Nov 25;153(1):79–94. doi: 10.1016/0022-2836(81)90528-3. [DOI] [PubMed] [Google Scholar]
- Takano T., Dickerson R. E. Conformation change of cytochrome c. II. Ferricytochrome c refinement at 1.8 A and comparison with the ferrocytochrome structure. J Mol Biol. 1981 Nov 25;153(1):95–115. doi: 10.1016/0022-2836(81)90529-5. [DOI] [PubMed] [Google Scholar]
- Timkovich R., Cai M. Investigation of the structure of oxidized Pseudomonas aeruginosa cytochrome c-551 by NMR: comparison of observed paramagnetic shifts and calculated pseudocontact shifts. Biochemistry. 1993 Nov 2;32(43):11516–11523. doi: 10.1021/bi00094a007. [DOI] [PubMed] [Google Scholar]
- Veitch N. C., Whitford D., Williams R. J. An analysis of pseudocontact shifts and their relationship to structural features of the redox states of cytochrome b5. FEBS Lett. 1990 Sep 3;269(2):297–304. doi: 10.1016/0014-5793(90)81180-v. [DOI] [PubMed] [Google Scholar]
- Wagner G., Hyberts S. G., Havel T. F. NMR structure determination in solution: a critique and comparison with X-ray crystallography. Annu Rev Biophys Biomol Struct. 1992;21:167–198. doi: 10.1146/annurev.bb.21.060192.001123. [DOI] [PubMed] [Google Scholar]
- Wand A. J., Di Stefano D. L., Feng Y. Q., Roder H., Englander S. W. Proton resonance assignments of horse ferrocytochrome c. Biochemistry. 1989 Jan 10;28(1):186–194. doi: 10.1021/bi00427a026. [DOI] [PubMed] [Google Scholar]
- Williams G., Clayden N. J., Moore G. R., Williams R. J. Comparison of the solution and crystal structures of mitochondrial cytochrome c. Analysis of paramagnetic shifts in the nuclear magnetic resonance spectrum of ferricytochrome c. J Mol Biol. 1985 Jun 5;183(3):447–460. doi: 10.1016/0022-2836(85)90013-0. [DOI] [PubMed] [Google Scholar]
- Wu L. C., Laub P. B., Elöve G. A., Carey J., Roder H. A noncovalent peptide complex as a model for an early folding intermediate of cytochrome c. Biochemistry. 1993 Sep 28;32(38):10271–10276. doi: 10.1021/bi00089a050. [DOI] [PubMed] [Google Scholar]
- de Dios A. C., Pearson J. G., Oldfield E. Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach. Science. 1993 Jun 4;260(5113):1491–1496. doi: 10.1126/science.8502992. [DOI] [PubMed] [Google Scholar]