Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Feb;4(2):159–166. doi: 10.1002/pro.5560040203

Rearranging the domains of pepsinogen.

X Lin 1, G Koelsch 1, J A Loy 1, J Tang 1
PMCID: PMC2143055  PMID: 7757006

Abstract

Most eukaryotic aspartic protease zymogens are synthesized as a single polypeptide chain that contains two distinct homologous lobes and a pro peptide, which is removed upon activation. In pepsinogen, the pro peptide precedes the N-terminal lobe (designated pep) and the C-terminal lobe (designated sin). Based on the three-dimensional structure of pepsinogen, we have designed a pepsinogen polypeptide with the internal rearrangement of domains from pro-pep-sin (native pepsinogen) to sin-pro-pep. The domain-rearranged zymogen also contains a 10-residue linker designed to connect sin and pro domains. Recombinant sin-pro-pep was synthesized in Escherichia coli, refolded from 8 M urea, and purified. Upon acidification, sin-pro-pep autoactivates to a two-chain enzyme. However, the emergence of activity is much slower than the conversion of the single-chain zymogen to a two-chain intermediate. In the activation of native pepsinogen and sin-pro-pep, the pro region is cleaved at two sites between residues 16P and 17P and 44P and 1 successively, and complete activation of sin-pro-pep requires an additional cleavage at a third site between residues 1P and 2P. In pepsinogen activation, the cleavage of the first site is rate limiting because the second site is cleaved more rapidly to generate activity. In the activation of sin-pro-pep, however, the second site is cleaved slower than the first, and cleavage of the third site is the rate limiting step.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argos P. Analysis of sequence-similar pentapeptides in unrelated protein tertiary structures. Strategies for protein folding and a guide for site-directed mutagenesis. J Mol Biol. 1987 Sep 20;197(2):331–348. doi: 10.1016/0022-2836(87)90127-6. [DOI] [PubMed] [Google Scholar]
  2. Dunn B. M., Lewitt M., Pham C. Inhibition of pepsin by analogues of pepsinogen-(1-12)-peptide with substitutions in the 4-7 sequence region. Biochem J. 1983 Feb 1;209(2):355–362. doi: 10.1042/bj2090355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Holley L. H., Karplus M. Neural networks for protein structure prediction. Methods Enzymol. 1991;202:204–224. doi: 10.1016/0076-6879(91)02012-x. [DOI] [PubMed] [Google Scholar]
  4. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  5. Kabsch W., Sander C. How good are predictions of protein secondary structure? FEBS Lett. 1983 May 8;155(2):179–182. doi: 10.1016/0014-5793(82)80597-8. [DOI] [PubMed] [Google Scholar]
  6. Kabsch W., Sander C. On the use of sequence homologies to predict protein structure: identical pentapeptides can have completely different conformations. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1075–1078. doi: 10.1073/pnas.81.4.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kageyama T., Ichinose M., Miki K., Athauda S. B., Tanji M., Takahashi K. Difference of activation processes and structure of activation peptides in human pepsinogens A and progastricsin. J Biochem. 1989 Jan;105(1):15–22. doi: 10.1093/oxfordjournals.jbchem.a122610. [DOI] [PubMed] [Google Scholar]
  8. Klein P., Delisi C. Prediction of protein structural class from the amino acid sequence. Biopolymers. 1986 Sep;25(9):1659–1672. doi: 10.1002/bip.360250909. [DOI] [PubMed] [Google Scholar]
  9. Kneller D. G., Cohen F. E., Langridge R. Improvements in protein secondary structure prediction by an enhanced neural network. J Mol Biol. 1990 Jul 5;214(1):171–182. doi: 10.1016/0022-2836(90)90154-E. [DOI] [PubMed] [Google Scholar]
  10. Levitt M., Chothia C. Structural patterns in globular proteins. Nature. 1976 Jun 17;261(5561):552–558. doi: 10.1038/261552a0. [DOI] [PubMed] [Google Scholar]
  11. Lin X. L., Lin Y. Z., Koelsch G., Gustchina A., Wlodawer A., Tang J. Enzymic activities of two-chain pepsinogen, two-chain pepsin, and the amino-terminal lobe of pepsinogen. J Biol Chem. 1992 Aug 25;267(24):17257–17263. [PubMed] [Google Scholar]
  12. Lin X. L., Wong R. N., Tang J. Synthesis, purification, and active site mutagenesis of recombinant porcine pepsinogen. J Biol Chem. 1989 Mar 15;264(8):4482–4489. [PubMed] [Google Scholar]
  13. Lin X., Loy J. A., Sussman F., Tang J. Conformational instability of the N- and C-terminal lobes of porcine pepsin in neutral and alkaline solutions. Protein Sci. 1993 Sep;2(9):1383–1390. doi: 10.1002/pro.5560020903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Matthews B. W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta. 1975 Oct 20;405(2):442–451. doi: 10.1016/0005-2795(75)90109-9. [DOI] [PubMed] [Google Scholar]
  15. McPhie P. A turbidimetric milk-clotting assay for pepsin. Anal Biochem. 1976 May 21;73(1):258–261. doi: 10.1016/0003-2697(76)90166-4. [DOI] [PubMed] [Google Scholar]
  16. Muskal S. M., Kim S. H. Predicting protein secondary structure content. A tandem neural network approach. J Mol Biol. 1992 Jun 5;225(3):713–727. doi: 10.1016/0022-2836(92)90396-2. [DOI] [PubMed] [Google Scholar]
  17. Neurath H., Walsh K. A., Winter W. P. Evolution of structure and function of proteases. Science. 1967 Dec 29;158(3809):1638–1644. doi: 10.1126/science.158.3809.1638. [DOI] [PubMed] [Google Scholar]
  18. Nielsen F. S., Foltmann B. Activation of porcine pepsinogen A. The stability of two non-covalent activation intermediates at pH 8.5. Eur J Biochem. 1993 Oct 1;217(1):137–142. doi: 10.1111/j.1432-1033.1993.tb18228.x. [DOI] [PubMed] [Google Scholar]
  19. Rooman M. J., Wodak S. J. Identification of predictive sequence motifs limited by protein structure data base size. Nature. 1988 Sep 1;335(6185):45–49. doi: 10.1038/335045a0. [DOI] [PubMed] [Google Scholar]
  20. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  21. Rost B., Sander C. Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7558–7562. doi: 10.1073/pnas.90.16.7558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sanny C. G., Hartsuck J. A., Tang J. Conversion of pepsinogen to pepsin. Further evidence for intramolecular and pepsin-catalyzed activation. J Biol Chem. 1975 Apr 10;250(7):2635–2639. [PubMed] [Google Scholar]
  23. Stolorz P., Lapedes A., Xia Y. Predicting protein secondary structure using neural net and statistical methods. J Mol Biol. 1992 May 20;225(2):363–377. doi: 10.1016/0022-2836(92)90927-c. [DOI] [PubMed] [Google Scholar]
  24. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  25. Tang J., James M. N., Hsu I. N., Jenkins J. A., Blundell T. L. Structural evidence for gene duplication in the evolution of the acid proteases. Nature. 1978 Feb 16;271(5646):618–621. doi: 10.1038/271618a0. [DOI] [PubMed] [Google Scholar]
  26. Tang J., Wong R. N. Evolution in the structure and function of aspartic proteases. J Cell Biochem. 1987 Jan;33(1):53–63. doi: 10.1002/jcb.240330106. [DOI] [PubMed] [Google Scholar]
  27. Taylor W. R., Thornton J. M. Recognition of super-secondary structure in proteins. J Mol Biol. 1984 Mar 15;173(4):487–512. [PubMed] [Google Scholar]
  28. Tomasselli A. G., Olsen M. K., Hui J. O., Staples D. J., Sawyer T. K., Heinrikson R. L., Tomich C. S. Substrate analogue inhibition and active site titration of purified recombinant HIV-1 protease. Biochemistry. 1990 Jan 9;29(1):264–269. doi: 10.1021/bi00453a036. [DOI] [PubMed] [Google Scholar]
  29. Zhang C. T., Chou K. C. An optimization approach to predicting protein structural class from amino acid composition. Protein Sci. 1992 Mar;1(3):401–408. doi: 10.1002/pro.5560010312. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES