Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Feb;4(2):228–236. doi: 10.1002/pro.5560040209

Octameric enolase from the hyperthermophilic bacterium Thermotoga maritima: purification, characterization, and image processing.

H Schurig 1, K Rutkat 1, R Rachel 1, R Jaenicke 1
PMCID: PMC2143061  PMID: 7757011

Abstract

Enolase (2-phospho-D-glycerate hydrolase; EC 4.2.1.11) from the hyperthermophilic bacterium Thermotoga maritima was purified to homogeneity. The N-terminal 25 amino acids of the enzyme reveal a high degree of similarity to enolases from other sources. As shown by sedimentation analysis and gel-permeation chromatography, the enzyme is a 345-kDa homoctamer with a subunit molecular mass of 48 +/- 5 kDa. Electron microscopy and image processing yield ring-shaped particles with a diameter of 17 nm and fourfold symmetry. Averaging of the aligned particles proves the enzyme to be a tetramer of dimers. The enzyme requires divalent cations in the activity assay, Mg2+ being most effective. The optimum temperature for catalysis is 90 degrees C, the temperature dependence yields a nonlinear Arrhenius profile with limiting activation energies of 75 kJ mol-1 and 43 kJ mol-1 at temperatures below and above 45 degrees C. The pH optimum of the enzyme lies between 7 and 8. The apparent Km values for 2-phospho-D-glycerate and Mg2+ at 75 degrees C are 0.07 mM and 0.03 mM; with increasing temperature, they are decreased by factors 2 and 30, respectively. Fluoride and phosphate cause competitive inhibition with a Ki of 0.14 mM. The enzyme shows high intrinsic thermal stability, with a thermal transition at 90 and 94 degrees C in the absence and in the presence of Mg2+.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes L. D., Stellwagen E. Enolase from the thermophile Thermus X-1. Biochemistry. 1973 Apr 10;12(8):1559–1565. doi: 10.1021/bi00732a015. [DOI] [PubMed] [Google Scholar]
  2. Bartholmes P., Jaenicke R. Molecular properties of yeast glyceraldehyde-3-phosphate dehydrogenase in the presence of ATP and KCl. Biochem Biophys Res Commun. 1975 May 19;64(2):485–492. doi: 10.1016/0006-291x(75)90347-2. [DOI] [PubMed] [Google Scholar]
  3. Blamey J. M., Adams M. W. Characterization of an ancestral type of pyruvate ferredoxin oxidoreductase from the hyperthermophilic bacterium, Thermotoga maritima. Biochemistry. 1994 Feb 1;33(4):1000–1007. doi: 10.1021/bi00170a019. [DOI] [PubMed] [Google Scholar]
  4. Brewer J. M. Yeast enolase: mechanism of activation by metal ions. CRC Crit Rev Biochem. 1981;11(3):209–254. doi: 10.3109/10409238109108702. [DOI] [PubMed] [Google Scholar]
  5. Chan W. W., Mort J. S., Chong D. K., Macdonald P. D. Studies on protein subunits. 3. Kinetic evidence for the presence of active subunits during the renaturation of muscle aldolase. J Biol Chem. 1973 Apr 25;248(8):2778–2784. [PubMed] [Google Scholar]
  6. Durchschlag H., Jaenicke R. Partial specific volume changes of proteins densimetric studies. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1074–1079. doi: 10.1016/0006-291x(82)92109-x. [DOI] [PubMed] [Google Scholar]
  7. Fabry S., Hensel R. Purification and characterization of D-glyceraldehyde-3-phosphate dehydrogenase from the thermophilic archaebacterium Methanothermus fervidus. Eur J Biochem. 1987 May 15;165(1):147–155. doi: 10.1111/j.1432-1033.1987.tb11205.x. [DOI] [PubMed] [Google Scholar]
  8. Girg R., Rudolph R., Jaenicke R. Limited proteolysis of porcine-muscle lactic dehydrogenase by thermolysin during reconstitution yields dimers. Eur J Biochem. 1981 Oct;119(2):301–305. doi: 10.1111/j.1432-1033.1981.tb05608.x. [DOI] [PubMed] [Google Scholar]
  9. Hecht K., Wrba A., Jaenicke R. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity. Eur J Biochem. 1989 Jul 15;183(1):69–74. doi: 10.1111/j.1432-1033.1989.tb14897.x. [DOI] [PubMed] [Google Scholar]
  10. Hegerl R., Altbauer A. The "EM" program system. Ultramicroscopy. 1982;9(1-2):109–116. doi: 10.1016/0304-3991(82)90233-9. [DOI] [PubMed] [Google Scholar]
  11. Hensel R., Laumann S., Lang J., Heumann H., Lottspeich F. Characterization of two D-glyceraldehyde-3-phosphate dehydrogenases from the extremely thermophilic archaebacterium Thermoproteus tenax. Eur J Biochem. 1987 Dec 30;170(1-2):325–333. doi: 10.1111/j.1432-1033.1987.tb13703.x. [DOI] [PubMed] [Google Scholar]
  12. Holland M. J., Holland J. P., Thill G. P., Jackson K. A. The primary structures of two yeast enolase genes. Homology between the 5' noncoding flanking regions of yeast enolase and glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem. 1981 Feb 10;256(3):1385–1395. [PubMed] [Google Scholar]
  13. Jaenicke R. Protein stability and molecular adaptation to extreme conditions. Eur J Biochem. 1991 Dec 18;202(3):715–728. doi: 10.1111/j.1432-1033.1991.tb16426.x. [DOI] [PubMed] [Google Scholar]
  14. Kaghad M., Dumont X., Chalon P., Lelias J. M., Lamandé N., Lucas M., Lazar M., Caput D. Nucleotide sequences of cDNAs alpha and gamma enolase mRNAs from mouse brain. Nucleic Acids Res. 1990 Jun 25;18(12):3638–3638. doi: 10.1093/nar/18.12.3638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaufmann M., Bartholmes P. Purification, characterization and inhibition by fluoride of enolase from Streptococcus mutans DSM 320523. Caries Res. 1992;26(2):110–116. doi: 10.1159/000261494. [DOI] [PubMed] [Google Scholar]
  16. Lakatos S., Halász G., Závodszky P. Conformational stability of lactate dehydrogenase from Bacillus thermus-aquaticus [proceedings]. Biochem Soc Trans. 1978;6(6):1195–1197. doi: 10.1042/bst0061195. [DOI] [PubMed] [Google Scholar]
  17. Lebioda L., Zhang E., Lewinski K., Brewer J. M. Fluoride inhibition of yeast enolase: crystal structure of the enolase-Mg(2+)-F(-)-Pi complex at 2.6 A resolution. Proteins. 1993 Jul;16(3):219–225. doi: 10.1002/prot.340160302. [DOI] [PubMed] [Google Scholar]
  18. Lee M. E., Nowak T. Metal ion specificity at the catalytic site of yeast enolase. Biochemistry. 1992 Feb 25;31(7):2172–2180. doi: 10.1021/bi00122a039. [DOI] [PubMed] [Google Scholar]
  19. Opitz U., Rudolph R., Jaenicke R., Ericsson L., Neurath H. Proteolytic dimers of porcine muscle lactate dehydrogenase: characterization, folding, and reconstitution of the truncated and nicked polypeptide chain. Biochemistry. 1987 Mar 10;26(5):1399–1406. doi: 10.1021/bi00379a028. [DOI] [PubMed] [Google Scholar]
  20. Ostendorp R., Liebl W., Schurig H., Jaenicke R. The L-lactate dehydrogenase gene of the hyperthermophilic bacterium Thermotoga maritima cloned by complementation in Escherichia coli. Eur J Biochem. 1993 Sep 15;216(3):709–715. doi: 10.1111/j.1432-1033.1993.tb18190.x. [DOI] [PubMed] [Google Scholar]
  21. Penczek P., Radermacher M., Frank J. Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy. 1992 Jan;40(1):33–53. [PubMed] [Google Scholar]
  22. Rehaber V., Jaenicke R. Stability and reconstitution of D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima. J Biol Chem. 1992 Jun 5;267(16):10999–11006. [PubMed] [Google Scholar]
  23. Schmidt M., Rutkat K., Rachel R., Pfeifer G., Jaenicke R., Viitanen P., Lorimer G., Buchner J. Symmetric complexes of GroE chaperonins as part of the functional cycle. Science. 1994 Jul 29;265(5172):656–659. doi: 10.1126/science.7913554. [DOI] [PubMed] [Google Scholar]
  24. Schultes V., Jaenicke R. Folding intermediates of hyperthermophilic D-glyceraldehyde-3-phosphate dehydrogenase from Thermotoga maritima are trapped at low temperature. FEBS Lett. 1991 Sep 23;290(1-2):235–238. doi: 10.1016/0014-5793(91)81268-d. [DOI] [PubMed] [Google Scholar]
  25. Schurig H., Beaucamp N., Ostendorp R., Jaenicke R., Adler E., Knowles J. R. Phosphoglycerate kinase and triosephosphate isomerase from the hyperthermophilic bacterium Thermotoga maritima form a covalent bifunctional enzyme complex. EMBO J. 1995 Feb 1;14(3):442–451. doi: 10.1002/j.1460-2075.1995.tb07020.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Singh R. P., Setlow P. Enolase from spores and cells of Bacillus megaterium: two-step purification of the enzyme and some of its properties. J Bacteriol. 1978 Apr;134(1):353–355. doi: 10.1128/jb.134.1.353-355.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stec B., Lebioda L. Refined structure of yeast apo-enolase at 2.25 A resolution. J Mol Biol. 1990 Jan 5;211(1):235–248. doi: 10.1016/0022-2836(90)90023-F. [DOI] [PubMed] [Google Scholar]
  28. Stellwagen E., Cronlund M. M., Barnes L. D. A thermostable enolase from the extreme thermophile Thermus aquaticus YT-1. Biochemistry. 1973 Apr 10;12(8):1552–1559. doi: 10.1021/bi00732a014. [DOI] [PubMed] [Google Scholar]
  29. WOLD F., BALLOU C. E. Studies on the enzyme enolase. I. Equilibrium studies. J Biol Chem. 1957 Jul;227(1):301–312. [PubMed] [Google Scholar]
  30. Weng M., Makaroff C. A., Zalkin H. Nucleotide sequence of Escherichia coli pyrG encoding CTP synthetase. J Biol Chem. 1986 Apr 25;261(12):5568–5574. [PubMed] [Google Scholar]
  31. Wrba A., Schweiger A., Schultes V., Jaenicke R., Závodszky P. Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima. Biochemistry. 1990 Aug 21;29(33):7584–7592. doi: 10.1021/bi00485a007. [DOI] [PubMed] [Google Scholar]
  32. YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]
  33. van Heel M., Frank J. Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy. 1981;6(2):187–194. doi: 10.1016/0304-3991(81)90059-0. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES