Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Feb;4(2):187–197. doi: 10.1002/pro.5560040206

Electrostatic potential distribution of the gene V protein from Ff phage facilitates cooperative DNA binding: a model of the GVP-ssDNA complex.

Y Guan 1, H Zhang 1, A H Wang 1
PMCID: PMC2143068  PMID: 7757008

Abstract

The crystal structure of the gene V protein (GVP) from the Ff filamentous phages (M13, fl, fd) has been solved for the wild-type and two mutant (Y41F and Y41H) proteins at high resolution. The Y41H mutant crystal structure revealed crystal packing interactions, which suggested a plausible scheme for constructing the polymeric protein shell of the GVP-single-stranded DNA (ssDNA) complex (Guan Y, et al., 1994, Biochemistry 33:7768-7778). The electrostatic potentials of the isolated and the cooperatively formed protein shell have been calculated using the program GRASP and they revealed a highly asymmetric pattern of the electrostatic charge distribution. The inner surface of the putative DNA-binding channel is positively charged, whereas the opposite outer surface is nearly neutral. The electrostatic calculation further demonstrated that the formation of the helical protein shell enhanced the asymmetry of the electrostatic distribution. A model of the GVP-ssDNA complex with the n = 4 DNA-binding mode could be built with only minor conformational perturbation to the GVP protein shell. The model is consistent with existing biochemical and biophysical data and provides clues to the properties of GVP, including the high cooperatively of the protein binding to ssDNA. The two antiparallel ssDNA strands form a helical ribbon with the sugar-phosphate backbones at the middle and the bases pointing away from each other. The bases are stacked and the Phe 73 residue is intercalated between two bases. The optimum binding to a tetranucleotide unit requires the participation of four GVP dimers, which may explain the cooperativity of the GVP binding to DNA.

Full Text

The Full Text of this article is available as a PDF (9.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arents G., Burlingame R. W., Wang B. C., Love W. E., Moudrianakis E. N. The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10148–10152. doi: 10.1073/pnas.88.22.10148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bulsink H., Harmsen B. J., Hilbers C. W. DNA-binding properties of gene-5 protein encoded by bacteriophage M 13. 1. The kinetics of the dissociation of gene-5-protein.polynucleotide complexes upon addition of salt. Eur J Biochem. 1988 Oct 1;176(3):589–596. doi: 10.1111/j.1432-1033.1988.tb14318.x. [DOI] [PubMed] [Google Scholar]
  3. Bulsink H., Harmsen B. J., Hilbers C. W. DNA-binding properties of gene-5 protein encoded by bacteriophage M13. 2. Further characterization of the different binding modes for poly- and oligodeoxynucleic acids. Eur J Biochem. 1988 Oct 1;176(3):597–608. doi: 10.1111/j.1432-1033.1988.tb14319.x. [DOI] [PubMed] [Google Scholar]
  4. Cuypers T., van der Ouderaa F. J., de Jong W. W. The amino acid sequence of gene 5 protein of bacteriophage M 13. Biochem Biophys Res Commun. 1974 Jul 24;59(2):557–563. doi: 10.1016/s0006-291x(74)80016-1. [DOI] [PubMed] [Google Scholar]
  5. Dick L. R., Geraldes C. F., Sherry A. D., Gray C. W., Gray D. M. 13C NMR of methylated lysines of fd gene 5 protein: evidence for a conformational change involving lysine 24 upon binding of a negatively charged lanthanide chelate. Biochemistry. 1989 Sep 19;28(19):7896–7904. doi: 10.1021/bi00445a052. [DOI] [PubMed] [Google Scholar]
  6. Folkers P. J., Nilges M., Folmer R. H., Konings R. N., Hilbers C. W. The solution structure of the Tyr41-->His mutant of the single-stranded DNA binding protein encoded by gene V of the filamentous bacteriophage M13. J Mol Biol. 1994 Feb 11;236(1):229–246. doi: 10.1006/jmbi.1994.1132. [DOI] [PubMed] [Google Scholar]
  7. Folkers P. J., van Duynhoven J. P., van Lieshout H. T., Harmsen B. J., van Boom J. H., Tesser G. I., Konings R. N., Hilbers C. W. Exploring the DNA binding domain of gene V protein encoded by bacteriophage M13 with the aid of spin-labeled oligonucleotides in combination with 1H-NMR. Biochemistry. 1993 Sep 14;32(36):9407–9416. doi: 10.1021/bi00087a020. [DOI] [PubMed] [Google Scholar]
  8. Fulford W., Model P. Bacteriophage f1 DNA replication genes. II. The roles of gene V protein and gene II protein in complementary strand synthesis. J Mol Biol. 1988 Sep 5;203(1):39–48. doi: 10.1016/0022-2836(88)90089-7. [DOI] [PubMed] [Google Scholar]
  9. Gilson M. K., Straatsma T. P., McCammon J. A., Ripoll D. R., Faerman C. H., Axelsen P. H., Silman I., Sussman J. L. Open "back door" in a molecular dynamics simulation of acetylcholinesterase. Science. 1994 Mar 4;263(5151):1276–1278. doi: 10.1126/science.8122110. [DOI] [PubMed] [Google Scholar]
  10. Gray C. W. Three-dimensional structure of complexes of single-stranded DNA-binding proteins with DNA. IKe and fd gene 5 proteins form left-handed helices with single-stranded DNA. J Mol Biol. 1989 Jul 5;208(1):57–64. doi: 10.1016/0022-2836(89)90087-9. [DOI] [PubMed] [Google Scholar]
  11. Gray D. M., Gray C. W., Carlson R. D. Neutron scattering data on reconstituted complexes of fd deoxyribonucleic acid and gene 5 protein show that the deoxyribonucleic acid is near the center. Biochemistry. 1982 May 25;21(11):2702–2713. doi: 10.1021/bi00540a020. [DOI] [PubMed] [Google Scholar]
  12. Kansy J. W., Clack B. A., Gray D. M. The binding of fd gene 5 protein to polydeoxynucleotides: evidence from CD measurements for two binding modes. J Biomol Struct Dyn. 1986 Jun;3(6):1079–1110. doi: 10.1080/07391102.1986.10508487. [DOI] [PubMed] [Google Scholar]
  13. King G. C., Coleman J. E. The Ff gene 5 protein-d(pA)40-60 complex: 1H NMR supports a localized base-binding model. Biochemistry. 1988 Sep 6;27(18):6947–6953. doi: 10.1021/bi00418a041. [DOI] [PubMed] [Google Scholar]
  14. King G. C., Coleman J. E. Two-dimensional 1H NMR of gene 5 protein indicates that only two aromatic rings interact significantly with oligodeoxynucleotide bases. Biochemistry. 1987 May 19;26(10):2929–2937. doi: 10.1021/bi00384a039. [DOI] [PubMed] [Google Scholar]
  15. Liu D. J., Day L. A. Pf1 virus structure: helical coat protein and DNA with paraxial phosphates. Science. 1994 Jul 29;265(5172):671–674. doi: 10.1126/science.8036516. [DOI] [PubMed] [Google Scholar]
  16. Nikolov D. B., Burley S. K. 2.1 A resolution refined structure of a TATA box-binding protein (TBP). Nat Struct Biol. 1994 Sep;1(9):621–637. doi: 10.1038/nsb0994-621. [DOI] [PubMed] [Google Scholar]
  17. Pabo C. O., Sauer R. T. Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem. 1992;61:1053–1095. doi: 10.1146/annurev.bi.61.070192.005201. [DOI] [PubMed] [Google Scholar]
  18. Roberts V. A., Freeman H. C., Olson A. J., Tainer J. A., Getzoff E. D. Electrostatic orientation of the electron-transfer complex between plastocyanin and cytochrome c. J Biol Chem. 1991 Jul 15;266(20):13431–13441. [PubMed] [Google Scholar]
  19. Sang B. C., Gray D. M. CD measurements show that fd and IKe gene 5 proteins undergo minimal conformational changes upon binding to poly(rA). Biochemistry. 1989 Nov 28;28(24):9502–9507. doi: 10.1021/bi00450a038. [DOI] [PubMed] [Google Scholar]
  20. Sang B. C., Gray D. M. Specificity of the binding of fd gene 5 protein to polydeoxyribonucleotides. J Biomol Struct Dyn. 1989 Dec;7(3):693–706. doi: 10.1080/07391102.1989.10508514. [DOI] [PubMed] [Google Scholar]
  21. Skinner M. M., Zhang H., Leschnitzer D. H., Guan Y., Bellamy H., Sweet R. M., Gray C. W., Konings R. N., Wang A. H., Terwilliger T. C. Structure of the gene V protein of bacteriophage f1 determined by multiwavelength x-ray diffraction on the selenomethionyl protein. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2071–2075. doi: 10.1073/pnas.91.6.2071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stassen A. P., Harmsen B. J., Schoenmakers J. G., Hilbers C. W., Konings R. N. Fluorescence studies of the binding of bacteriophage M13 gene V mutant proteins to polynucleotides. Eur J Biochem. 1992 Jun 15;206(3):605–612. doi: 10.1111/j.1432-1033.1992.tb16965.x. [DOI] [PubMed] [Google Scholar]
  23. Van Duynhoven J. P., Nooren I. M., Swinkels D. W., Folkers P. J., Harmsen B. J., Konings R. N., Tesser G. I., Hilbers C. W. Exploration of the single-stranded DNA-binding domains of the gene V proteins encoded by the filamentous bacteriophages IKe and M13 by means of spin-labeled oligonucleotide and lanthanide-chelate complexes. Eur J Biochem. 1993 Sep 1;216(2):507–517. doi: 10.1111/j.1432-1033.1993.tb18169.x. [DOI] [PubMed] [Google Scholar]
  24. Warwicker J., Engelman B. P., Steitz T. A. Electrostatic calculations and model-building suggest that DNA bound to CAP is sharply bent. Proteins. 1987;2(4):283–289. doi: 10.1002/prot.340020404. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES