Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Mar;4(3):361–372. doi: 10.1002/pro.5560040302

Approaches to labeling and identification of active site residues in glycosidases.

S G Withers 1, R Aebersold 1
PMCID: PMC2143074  PMID: 7795519

Abstract

Glycosidases play a key role in a number of biological processes and, as such, are of considerable clinical and biotechnological importance. Knowledge of the identifies of catalytically important active site residues is essential for understanding the catalytic mechanism, for enzyme classification, and for targeted bioengineering of glycosidases with altered characteristics. Here we review and discuss traditional strategies and novel approaches based on tandem mass spectrometry for the identification of the key active site residues in glycosidases.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aleshin A. E., Firsov L. M., Honzatko R. B. Refined structure for the complex of acarbose with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution. J Biol Chem. 1994 Jun 3;269(22):15631–15639. [PubMed] [Google Scholar]
  2. Atsumi S., Iinuma H., Nosaka C., Umezawa K. Biological activities of cyclophellitol. J Antibiot (Tokyo) 1990 Dec;43(12):1579–1585. doi: 10.7164/antibiotics.43.1579. [DOI] [PubMed] [Google Scholar]
  3. Atsumi S., Nosaka C., Iinuma H., Umezawa K. Inhibition of glucocerebrosidase and induction of neural abnormality by cyclophellitol in mice. Arch Biochem Biophys. 1992 Sep;297(2):362–367. doi: 10.1016/0003-9861(92)90685-p. [DOI] [PubMed] [Google Scholar]
  4. Barton N. W., Furbish F. S., Murray G. J., Garfield M., Brady R. O. Therapeutic response to intravenous infusions of glucocerebrosidase in a patient with Gaucher disease. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1913–1916. doi: 10.1073/pnas.87.5.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bause E., Legler G. Isolation and amino acid sequence of a hexadecapeptide from the active site of beta-glucosidase A3 from Aspergillus wentii. Hoppe Seylers Z Physiol Chem. 1974 Apr;355(4):438–442. doi: 10.1515/bchm2.1974.355.1.438. [DOI] [PubMed] [Google Scholar]
  6. Black T. S., Kiss L., Tull D., Withers S. G. N-bromoacetyl-glycopyranosylamines as affinity labels for a beta-glucosidase and a cellulase. Carbohydr Res. 1993 Dec 16;250(1):195–202. doi: 10.1016/0008-6215(93)84166-4. [DOI] [PubMed] [Google Scholar]
  7. Coughlan M. P., Hazlewood G. P. beta-1,4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem. 1993 Jun;17(Pt 3):259–289. [PubMed] [Google Scholar]
  8. Dinur T., Osiecki K. M., Legler G., Gatt S., Desnick R. J., Grabowski G. A. Human acid beta-glucosidase: isolation and amino acid sequence of a peptide containing the catalytic site. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1660–1664. doi: 10.1073/pnas.83.6.1660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eshdat Y., Dunn A., Sharon N. Chemical conversion of aspartic acid 52, a catalytic residue in hen egg-white lysozyme, to homoserine. Proc Natl Acad Sci U S A. 1974 May;71(5):1658–1662. doi: 10.1073/pnas.71.5.1658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eshdat Y., McKelvy J. F., Sharon N. Identification of aspartic acid 52 as the point of attachment of an affinity label in hen egg white lysozyme. J Biol Chem. 1973 Aug 25;248(16):5892–5898. [PubMed] [Google Scholar]
  11. Fowler A. V., Smith P. J. The active site regions of lacZ and ebg beta-galactosidases are homologous. J Biol Chem. 1983 Sep 10;258(17):10204–10207. [PubMed] [Google Scholar]
  12. Fowler A. V., Zabin I., Sinnott M. L., Zabin I. Methionine 500, the site of covalent attachment of an active site-directed reagent of beta-galactosidase. J Biol Chem. 1978 Aug 10;253(15):5283–5285. [PubMed] [Google Scholar]
  13. Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C., Jr, Warren R. A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev. 1991 Jun;55(2):303–315. doi: 10.1128/mr.55.2.303-315.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Høj P. B., Rodriguez E. B., Iser J. R., Stick R. V., Stone B. A. Active site-directed inhibition by optically pure epoxyalkyl cellobiosides reveals differences in active site geometry of two 1,3-1,4-beta-D-glucan 4-glucanohydrolases. The importance of epoxide stereochemistry for enzyme inactivation. J Biol Chem. 1991 Jun 25;266(18):11628–11631. [PubMed] [Google Scholar]
  16. Kanfer J. N., Stephens M. C., Singh H., Legler G. The Gaucher mouse. Prog Clin Biol Res. 1982;95:627–644. [PubMed] [Google Scholar]
  17. Klein C., Hollender J., Bender H., Schulz G. E. Catalytic center of cyclodextrin glycosyltransferase derived from X-ray structure analysis combined with site-directed mutagenesis. Biochemistry. 1992 Sep 22;31(37):8740–8746. doi: 10.1021/bi00152a009. [DOI] [PubMed] [Google Scholar]
  18. Legler G., Bause E. Epoxyalkyl oligo-(1 leads to 4)- -D-glucosides as active-site-directed inhibitors of cellulases. Carbohydr Res. 1973 May;28(1):45–52. doi: 10.1016/s0008-6215(00)82855-4. [DOI] [PubMed] [Google Scholar]
  19. Legler G. Glycoside hydrolases: mechanistic information from studies with reversible and irreversible inhibitors. Adv Carbohydr Chem Biochem. 1990;48:319–384. doi: 10.1016/s0065-2318(08)60034-7. [DOI] [PubMed] [Google Scholar]
  20. Liu W., Madsen N. B., Braun C., Withers S. G. Reassessment of the catalytic mechanism of glycogen debranching enzyme. Biochemistry. 1991 Feb 5;30(5):1419–1424. doi: 10.1021/bi00219a036. [DOI] [PubMed] [Google Scholar]
  21. Macarron R., van Beeumen J., Henrissat B., de la Mata I., Claeyssens M. Identification of an essential glutamate residue in the active site of endoglucanase III from Trichoderma reesei. FEBS Lett. 1993 Jan 25;316(2):137–140. doi: 10.1016/0014-5793(93)81202-b. [DOI] [PubMed] [Google Scholar]
  22. Matsui H., Blanchard J. S., Brewer C. F., Hehre E. J. Alpha-secondary tritium kinetic isotope effects for the hydrolysis of alpha-D-glucopyranosyl fluoride by exo-alpha-glucanases. J Biol Chem. 1989 May 25;264(15):8714–8716. [PubMed] [Google Scholar]
  23. McCarter J. D., Adam M. J., Withers S. G. Binding energy and catalysis. Fluorinated and deoxygenated glycosides as mechanistic probes of Escherichia coli (lacZ) beta-galactosidase. Biochem J. 1992 Sep 15;286(Pt 3):721–727. doi: 10.1042/bj2860721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mega T., Nishijima T., Ikenaka T. Active-site-directed inactivation of Aspergillus oryzae beta-galactosidase with beta-D-galactopyranosylmethyl-p-nitrophenyltriazene. J Biochem. 1990 Apr;107(4):641–644. doi: 10.1093/oxfordjournals.jbchem.a123100. [DOI] [PubMed] [Google Scholar]
  25. Miao S., McCarter J. D., Grace M. E., Grabowski G. A., Aebersold R., Withers S. G. Identification of Glu340 as the active-site nucleophile in human glucocerebrosidase by use of electrospray tandem mass spectrometry. J Biol Chem. 1994 Apr 15;269(15):10975–10978. [PubMed] [Google Scholar]
  26. Miao S., Ziser L., Aebersold R., Withers S. G. Identification of glutamic acid 78 as the active site nucleophile in Bacillus subtilis xylanase using electrospray tandem mass spectrometry. Biochemistry. 1994 Jun 14;33(23):7027–7032. doi: 10.1021/bi00189a002. [DOI] [PubMed] [Google Scholar]
  27. Mikami B., Hehre E. J., Sato M., Katsube Y., Hirose M., Morita Y., Sacchettini J. C. The 2.0-A resolution structure of soybean beta-amylase complexed with alpha-cyclodextrin. Biochemistry. 1993 Jul 13;32(27):6836–6845. doi: 10.1021/bi00078a006. [DOI] [PubMed] [Google Scholar]
  28. Moult J., Eshdat Y., Sharon N. The identification by x-ray crystallography of the site of attachment of an affinity label to hen egg-white lysozyme. J Mol Biol. 1973 Mar 25;75(1):1–4. doi: 10.1016/0022-2836(73)90524-x. [DOI] [PubMed] [Google Scholar]
  29. Naider F., Bohak Z., Yariv J. Reversible alkylation of a methionyl residue near the active site of -galactosidase. Biochemistry. 1972 Aug 15;11(17):3202–3208. doi: 10.1021/bi00767a010. [DOI] [PubMed] [Google Scholar]
  30. Neufeld E. F. Lysosomal storage diseases. Annu Rev Biochem. 1991;60:257–280. doi: 10.1146/annurev.bi.60.070191.001353. [DOI] [PubMed] [Google Scholar]
  31. Qian M., Haser R., Payan F. Structure and molecular model refinement of pig pancreatic alpha-amylase at 2.1 A resolution. J Mol Biol. 1993 Jun 5;231(3):785–799. doi: 10.1006/jmbi.1993.1326. [DOI] [PubMed] [Google Scholar]
  32. Roeser K. R., Legler G. Role of sugar hydroxyl groups in glycoside hydrolysis. Cleavage mechanism of deoxyglucosides and related substrates by beta-glucosidase A3 from Aspergillus wentii. Biochim Biophys Acta. 1981 Feb 13;657(2):321–333. doi: 10.1016/0005-2744(81)90318-1. [DOI] [PubMed] [Google Scholar]
  33. Rouvinen J., Bergfors T., Teeri T., Knowles J. K., Jones T. A. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science. 1990 Jul 27;249(4967):380–386. doi: 10.1126/science.2377893. [DOI] [PubMed] [Google Scholar]
  34. Shulman M. L., Shiyan S. D., Khorlin A. Y. Specfic irreversible inhibition of sweet-almond beta-glucosidase by some beta-glycopyranosylepoxyalkanes and beta-d-glucopyranosyl isothiocyanate. Biochim Biophys Acta. 1976 Aug 12;445(1):169–181. doi: 10.1016/0005-2744(76)90170-4. [DOI] [PubMed] [Google Scholar]
  35. Street I. P., Rupitz K., Withers S. G. Fluorinated and deoxygenated substrates as probes of transition-state structure in glycogen phosphorylase. Biochemistry. 1989 Feb 21;28(4):1581–1587. doi: 10.1021/bi00430a024. [DOI] [PubMed] [Google Scholar]
  36. Svensson B., Jespersen H., Sierks M. R., MacGregor E. A. Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem J. 1989 Nov 15;264(1):309–311. doi: 10.1042/bj2640309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tull D., Withers S. G., Gilkes N. R., Kilburn D. G., Warren R. A., Aebersold R. Glutamic acid 274 is the nucleophile in the active site of a "retaining" exoglucanase from Cellulomonas fimi. J Biol Chem. 1991 Aug 25;266(24):15621–15625. [PubMed] [Google Scholar]
  38. Wakarchuk W. W., Campbell R. L., Sung W. L., Davoodi J., Yaguchi M. Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Protein Sci. 1994 Mar;3(3):467–475. doi: 10.1002/pro.5560030312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wang Q., Tull D., Meinke A., Gilkes N. R., Warren R. A., Aebersold R., Withers S. G. Glu280 is the nucleophile in the active site of Clostridium thermocellum CelC, a family A endo-beta-1,4-glucanase. J Biol Chem. 1993 Jul 5;268(19):14096–14102. [PubMed] [Google Scholar]
  40. White A., Withers S. G., Gilkes N. R., Rose D. R. Crystal structure of the catalytic domain of the beta-1,4-glycanase cex from Cellulomonas fimi. Biochemistry. 1994 Oct 25;33(42):12546–12552. doi: 10.1021/bi00208a003. [DOI] [PubMed] [Google Scholar]
  41. Withers S. G., Rupitz K., Street I. P. 2-Deoxy-2-fluoro-D-glycosyl fluorides. A new class of specific mechanism-based glycosidase inhibitors. J Biol Chem. 1988 Jun 15;263(17):7929–7932. [PubMed] [Google Scholar]
  42. Withers S. G., Umezawa K. Cyclophellitol: a naturally occurring mechanism-based inactivator of beta-glucosidases. Biochem Biophys Res Commun. 1991 May 31;177(1):532–537. doi: 10.1016/0006-291x(91)92016-d. [DOI] [PubMed] [Google Scholar]
  43. Yuan J., Martinez-Bilbao M., Huber R. E. Substitutions for Glu-537 of beta-galactosidase from Escherichia coli cause large decreases in catalytic activity. Biochem J. 1994 Apr 15;299(Pt 2):527–531. doi: 10.1042/bj2990527. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES