Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Mar;4(3):450–459. doi: 10.1002/pro.5560040312

Refined solution structure of human profilin I.

W J Metzler 1, B T Farmer 2nd 1, K L Constantine 1, M S Friedrichs 1, T Lavoie 1, L Mueller 1
PMCID: PMC2143075  PMID: 7795529

Abstract

Profilin is a ubiquitous eukaryotic protein that binds to both cytosolic actin and the phospholipid phosphatidylinositol-4,5-bisphosphate. These dual competitive binding capabilities of profilin suggest that profilin serves as a link between the phosphatidyl inositol cycle and actin polymerization, and thus profilin may be an essential component in the signaling pathway leading to cytoskeletal rearrangement. The refined three-dimensional solution structure of human profilin I has been determined using multidimensional heteronuclear NMR spectroscopy. Twenty structures were selected to represent the solution conformational ensemble. This ensemble of structures has root-mean-square distance deviations from the mean structure of 0.58 A for the backbone atoms and 0.98 A for all non-hydrogen atoms. Comparison of the solution structure of human profilin to the crystal structure of bovine profilin reveals that, although profilin adopts essentially identical conformations in both states, the solution structure is more compact than the crystal structure. Interestingly, the regions that show the most structural diversity are located at or near the actin-binding site of profilin. We suggest that structural differences are reflective of dynamical properties of profilin that facilitate favorable interactions with actin. The global folding pattern of human profilin also closely resembles that of Acanthamoeba profilin I, reflective of the 22% sequence identity and approximately 45% sequence similarity between these two proteins.

Full Text

The Full Text of this article is available as a PDF (5.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlsson L., Nyström L. E., Sundkvist I., Markey F., Lindberg U. Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J Mol Biol. 1977 Sep 25;115(3):465–483. doi: 10.1016/0022-2836(77)90166-8. [DOI] [PubMed] [Google Scholar]
  2. Cedergren-Zeppezauer E. S., Goonesekere N. C., Rozycki M. D., Myslik J. C., Dauter Z., Lindberg U., Schutt C. E. Crystallization and structure determination of bovine profilin at 2.0 A resolution. J Mol Biol. 1994 Jul 29;240(5):459–475. doi: 10.1006/jmbi.1994.1461. [DOI] [PubMed] [Google Scholar]
  3. Constantine K. L., Friedrichs M. S., Bell A. J., Lavoie T. B., Mueller L., Metzler W. J. Relaxation study of the backbone dynamics of human profilin by two-dimensional 1H-15N NMR. FEBS Lett. 1993 Dec 28;336(3):457–461. doi: 10.1016/0014-5793(93)80855-o. [DOI] [PubMed] [Google Scholar]
  4. Farmer B. T., 2nd, Mueller L. Simultaneous acquisition of [13C,15N]- and [15N,15N]-separated 4D gradient-enhanced NOESY spectra in proteins. J Biomol NMR. 1994 Sep;4(5):673–687. doi: 10.1007/BF00404277. [DOI] [PubMed] [Google Scholar]
  5. Fedorov A. A., Magnus K. A., Graupe M. H., Lattman E. E., Pollard T. D., Almo S. C. X-ray structures of isoforms of the actin-binding protein profilin that differ in their affinity for phosphatidylinositol phosphates. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8636–8640. doi: 10.1073/pnas.91.18.8636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goldschmidt-Clermont P. J., Machesky L. M., Baldassare J. J., Pollard T. D. The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science. 1990 Mar 30;247(4950):1575–1578. doi: 10.1126/science.2157283. [DOI] [PubMed] [Google Scholar]
  7. Goldschmidt-Clermont P. J., Machesky L. M., Doberstein S. K., Pollard T. D. Mechanism of the interaction of human platelet profilin with actin. J Cell Biol. 1991 Jun;113(5):1081–1089. doi: 10.1083/jcb.113.5.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Haarer B. K., Petzold A. S., Brown S. S. Mutational analysis of yeast profilin. Mol Cell Biol. 1993 Dec;13(12):7864–7873. doi: 10.1128/mcb.13.12.7864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kaiser D. A., Goldschmidt-Clermont P. J., Levine B. A., Pollard T. D. Characterization of renatured profilin purified by urea elution from poly-L-proline agarose columns. Cell Motil Cytoskeleton. 1989;14(2):251–262. doi: 10.1002/cm.970140211. [DOI] [PubMed] [Google Scholar]
  10. Kline T. P., Brown F. K., Brown S. C., Jeffs P. W., Kopple K. D., Mueller L. Solution structures of human transforming growth factor alpha derived from 1H NMR data. Biochemistry. 1990 Aug 28;29(34):7805–7813. doi: 10.1021/bi00486a005. [DOI] [PubMed] [Google Scholar]
  11. Machesky L. M., Goldschmidt-Clermont P. J., Pollard T. D. The affinities of human platelet and Acanthamoeba profilin isoforms for polyphosphoinositides account for their relative abilities to inhibit phospholipase C. Cell Regul. 1990 Nov;1(12):937–950. doi: 10.1091/mbc.1.12.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Marion D., Driscoll P. C., Kay L. E., Wingfield P. T., Bax A., Gronenborn A. M., Clore G. M. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry. 1989 Jul 25;28(15):6150–6156. doi: 10.1021/bi00441a004. [DOI] [PubMed] [Google Scholar]
  13. Metzler W. J., Bell A. J., Ernst E., Lavoie T. B., Mueller L. Identification of the poly-L-proline-binding site on human profilin. J Biol Chem. 1994 Feb 11;269(6):4620–4625. [PubMed] [Google Scholar]
  14. Metzler W. J., Constantine K. L., Friedrichs M. S., Bell A. J., Ernst E. G., Lavoie T. B., Mueller L. Characterization of the three-dimensional solution structure of human profilin: 1H, 13C, and 15N NMR assignments and global folding pattern. Biochemistry. 1993 Dec 21;32(50):13818–13829. doi: 10.1021/bi00213a010. [DOI] [PubMed] [Google Scholar]
  15. Metzler W. J., Valentine K., Roebber M., Friedrichs M. S., Marsh D. G., Mueller L. Determination of the three-dimensional solution structure of ragweed allergen Amb t V by nuclear magnetic resonance spectroscopy. Biochemistry. 1992 Jun 9;31(22):5117–5127. doi: 10.1021/bi00137a005. [DOI] [PubMed] [Google Scholar]
  16. Nanzer A. P., Poulsen F. M., van Gunsteren W. F., Torda A. E. A reassessment of the structure of chymotrypsin inhibitor 2 (CI-2) using time-averaged NMR restraints. Biochemistry. 1994 Dec 6;33(48):14503–14511. doi: 10.1021/bi00252a017. [DOI] [PubMed] [Google Scholar]
  17. Pantaloni D., Carlier M. F. How profilin promotes actin filament assembly in the presence of thymosin beta 4. Cell. 1993 Dec 3;75(5):1007–1014. doi: 10.1016/0092-8674(93)90544-z. [DOI] [PubMed] [Google Scholar]
  18. Pollard T. D., Cooper J. A. Quantitative analysis of the effect of Acanthamoeba profilin on actin filament nucleation and elongation. Biochemistry. 1984 Dec 18;23(26):6631–6641. doi: 10.1021/bi00321a054. [DOI] [PubMed] [Google Scholar]
  19. Pollard T. D., Rimm D. L. Analysis of cDNA clones for Acanthamoeba profilin-I and profilin-II shows end to end homology with vertebrate profilins and a small family of profilin genes. Cell Motil Cytoskeleton. 1991;20(2):169–177. doi: 10.1002/cm.970200209. [DOI] [PubMed] [Google Scholar]
  20. Schutt C. E., Myslik J. C., Rozycki M. D., Goonesekere N. C., Lindberg U. The structure of crystalline profilin-beta-actin. Nature. 1993 Oct 28;365(6449):810–816. doi: 10.1038/365810a0. [DOI] [PubMed] [Google Scholar]
  21. Theriot J. A., Rosenblatt J., Portnoy D. A., Goldschmidt-Clermont P. J., Mitchison T. J. Involvement of profilin in the actin-based motility of L. monocytogenes in cells and in cell-free extracts. Cell. 1994 Feb 11;76(3):505–517. doi: 10.1016/0092-8674(94)90114-7. [DOI] [PubMed] [Google Scholar]
  22. Vinson V. K., Archer S. J., Lattman E. E., Pollard T. D., Torchia D. A. Three-dimensional solution structure of Acanthamoeba profilin-I. J Cell Biol. 1993 Sep;122(6):1277–1283. doi: 10.1083/jcb.122.6.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wahl M., Carpenter G. Selective phospholipase C activation. Bioessays. 1991 Mar;13(3):107–113. doi: 10.1002/bies.950130303. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES