Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Apr;4(4):671–680. doi: 10.1002/pro.5560040407

An NMR and spin label study of the effects of binding calcium and troponin I inhibitory peptide to cardiac troponin C.

J W Howarth 1, G A Krudy 1, X Lin 1, J A Putkey 1, P R Rosevear 1
PMCID: PMC2143097  PMID: 7613465

Abstract

The paramagnetic relaxation reagent, 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxy (HyTEMPO), was used to probe the surface exposure of methionine residues of recombinant cardiac troponin C (cTnC) in the absence and presence of Ca2+ at the regulatory site (site II), as well as in the presence of the troponin I inhibitory peptide (cTnIp). Methyl resonances of the 10 Met residues of cTnC were chosen as spectral probes because they are thought to play a role in both formation of the N-terminal hydrophobic pocket and in the binding of cTnIp. Proton longitudinal relaxation rates (R1's) of the [13C-methyl] groups in [13C-methyl]Met-labeled cTnC(C35S) were determined using a T1 two-dimensional heteronuclear single- and multiple-quantum coherence pulse sequence. Solvent-exposed Met residues exhibit increased relaxation rates from the paramagnetic effect of HyTEMPO. Relaxation rates in 2Ca(2+)-loaded and Ca(2+)-saturated cTnC, both in the presence and absence of HyTEMPO, permitted the topological mapping of the conformational changes induced by the binding of Ca2+ to site II, the site responsible for triggering muscle contraction. Calcium binding at site II resulted in an increased exposure of Met residues 45 and 81 to the soluble spin label HyTEMPO. This result is consistent with an opening of the hydrophobic pocket in the N-terminal domain of cTnC upon binding Ca2+ at site II. The binding of the inhibitory peptide cTnIp, corresponding to Asn 129 through Ile 149 of cTnI, to both 2Ca(2+)-loaded and Ca(2+)-saturated cTnC was shown to protect Met residues 120 and 157 from HyTEMPO as determined by a decrease in their measured R1 values. These results suggest that in both the 2Ca(2+)-loaded and Ca(2+)-saturated forms of cTnC, cTnIp binds primarily to the C-terminal domain of cTnC.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babu Y. S., Bugg C. E., Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988 Nov 5;204(1):191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
  2. Brito R. M., Putkey J. A., Strynadka N. C., James M. N., Rosevear P. R. Comparative NMR studies on cardiac troponin C and a mutant incapable of binding calcium at site II. Biochemistry. 1991 Oct 22;30(42):10236–10245. doi: 10.1021/bi00106a023. [DOI] [PubMed] [Google Scholar]
  3. Cachia P. J., Sykes B. D., Hodges R. S. Calcium-dependent inhibitory region of troponin: a proton nuclear magnetic resonance study on the interaction between troponin C and the synthetic peptide N alpha-acetyl[FPhe106]TnI-(104-115) amide. Biochemistry. 1983 Aug 16;22(17):4145–4152. doi: 10.1021/bi00286a024. [DOI] [PubMed] [Google Scholar]
  4. Campbell A. P., Sykes B. D. Interaction of troponin I and troponin C. Use of the two-dimensional nuclear magnetic resonance transferred nuclear Overhauser effect to determine the structure of the inhibitory troponin I peptide when bound to skeletal troponin C. J Mol Biol. 1991 Nov 20;222(2):405–421. doi: 10.1016/0022-2836(91)90219-v. [DOI] [PubMed] [Google Scholar]
  5. Campbell A. P., Van Eyk J. E., Hodges R. S., Sykes B. D. Interaction of troponin I and troponin C: use of the two-dimensional transferred nuclear Overhauser effect to determine the structure of a Gly-110 inhibitory troponin I peptide analog when bound to cardiac troponin C. Biochim Biophys Acta. 1992 Nov 10;1160(1):35–54. doi: 10.1016/0167-4838(92)90036-d. [DOI] [PubMed] [Google Scholar]
  6. Grabarek Z., Tan R. Y., Wang J., Tao T., Gergely J. Inhibition of mutant troponin C activity by an intra-domain disulphide bond. Nature. 1990 May 10;345(6271):132–135. doi: 10.1038/345132a0. [DOI] [PubMed] [Google Scholar]
  7. Herzberg O., James M. N. Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature. 1985 Feb 21;313(6004):653–659. doi: 10.1038/313653a0. [DOI] [PubMed] [Google Scholar]
  8. Herzberg O., Moult J., James M. N. A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction. J Biol Chem. 1986 Feb 25;261(6):2638–2644. [PubMed] [Google Scholar]
  9. Holroyde M. J., Robertson S. P., Johnson J. D., Solaro R. J., Potter J. D. The calcium and magnesium binding sites on cardiac troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J Biol Chem. 1980 Dec 25;255(24):11688–11693. [PubMed] [Google Scholar]
  10. Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
  11. Kobayashi T., Tao T., Gergely J., Collins J. H. Structure of the troponin complex. Implications of photocross-linking of troponin I to troponin C thiol mutants. J Biol Chem. 1994 Feb 25;269(8):5725–5729. [PubMed] [Google Scholar]
  12. Kretsinger R. H. Structure and evolution of calcium-modulated proteins. CRC Crit Rev Biochem. 1980;8(2):119–174. doi: 10.3109/10409238009105467. [DOI] [PubMed] [Google Scholar]
  13. Krudy G. A., Brito R. M., Putkey J. A., Rosevear P. R. Conformational changes in the metal-binding sites of cardiac troponin C induced by calcium binding. Biochemistry. 1992 Feb 18;31(6):1595–1602. doi: 10.1021/bi00121a003. [DOI] [PubMed] [Google Scholar]
  14. Krudy G. A., Kleerekoper Q., Guo X., Howarth J. W., Solaro R. J., Rosevear P. R. NMR studies delineating spatial relationships within the cardiac troponin I-troponin C complex. J Biol Chem. 1994 Sep 23;269(38):23731–23735. [PubMed] [Google Scholar]
  15. Lan J., Albaugh S., Steiner R. F. Interactions of troponin I and its inhibitory fragment (residues 104-115) with troponin C and calmodulin. Biochemistry. 1989 Sep 5;28(18):7380–7385. doi: 10.1021/bi00444a035. [DOI] [PubMed] [Google Scholar]
  16. Lin X., Krudy G. A., Howarth J., Brito R. M., Rosevear P. R., Putkey J. A. Assignment and calcium dependence of methionyl epsilon C and epsilon H resonances in cardiac troponin C. Biochemistry. 1994 Dec 6;33(48):14434–14442. doi: 10.1021/bi00252a009. [DOI] [PubMed] [Google Scholar]
  17. Meador W. E., Means A. R., Quiocho F. A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992 Aug 28;257(5074):1251–1255. doi: 10.1126/science.1519061. [DOI] [PubMed] [Google Scholar]
  18. Negele J. C., Dotson D. G., Liu W., Sweeney H. L., Putkey J. A. Mutation of the high affinity calcium binding sites in cardiac troponin C. J Biol Chem. 1992 Jan 15;267(2):825–831. [PubMed] [Google Scholar]
  19. Ngai S. M., Hodges R. S. Biologically important interactions between synthetic peptides of the N-terminal region of troponin I and troponin C. J Biol Chem. 1992 Aug 5;267(22):15715–15720. [PubMed] [Google Scholar]
  20. Ngai S. M., Sönnichsen F. D., Hodges R. S. Photochemical cross-linking between native rabbit skeletal troponin C and benzoylbenzoyl-troponin I inhibitory peptide, residues 104-115. J Biol Chem. 1994 Jan 21;269(3):2165–2172. [PubMed] [Google Scholar]
  21. Olah G. A., Rokop S. E., Wang C. L., Blechner S. L., Trewhella J. Troponin I encompasses an extended troponin C in the Ca(2+)-bound complex: a small-angle X-ray and neutron scattering study. Biochemistry. 1994 Jul 12;33(27):8233–8239. doi: 10.1021/bi00193a009. [DOI] [PubMed] [Google Scholar]
  22. Petros A. M., Kopple K. D. NMR studies of protein surfaces. The interaction of lysozyme with tri-N-acetylglucosamine. Biochem Pharmacol. 1990 Jul 1;40(1):65–68. doi: 10.1016/0006-2952(90)90180-s. [DOI] [PubMed] [Google Scholar]
  23. Petros A. M., Mueller L., Kopple K. D. NMR identification of protein surfaces using paramagnetic probes. Biochemistry. 1990 Oct 30;29(43):10041–10048. doi: 10.1021/bi00495a005. [DOI] [PubMed] [Google Scholar]
  24. Petros A. M., Neri P., Fesik S. W. Identification of solvent-exposed regions of an FK-506 analog, ascomycin, bound to FKBP using a paramagnetic probe. J Biomol NMR. 1992 Jan;2(1):11–18. doi: 10.1007/BF02192797. [DOI] [PubMed] [Google Scholar]
  25. Putkey J. A., Sweeney H. L., Campbell S. T. Site-directed mutation of the trigger calcium-binding sites in cardiac troponin C. J Biol Chem. 1989 Jul 25;264(21):12370–12378. [PubMed] [Google Scholar]
  26. Robertson S. P., Johnson J. D., Potter J. D. The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. Biophys J. 1981 Jun;34(3):559–569. doi: 10.1016/S0006-3495(81)84868-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rosevear P. R. Purification and NMR studies of [methyl-13C]methionine-labeled truncated methionyl-tRNA synthetase. Biochemistry. 1988 Oct 4;27(20):7931–7939. doi: 10.1021/bi00420a052. [DOI] [PubMed] [Google Scholar]
  28. Satyshur K. A., Rao S. T., Pyzalska D., Drendel W., Greaser M., Sundaralingam M. Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2-A resolution. J Biol Chem. 1988 Feb 5;263(4):1628–1647. [PubMed] [Google Scholar]
  29. Slupsky C. M., Shaw G. S., Campbell A. P., Sykes B. D. A 1H NMR study of a ternary peptide complex that mimics the interaction between troponin C and troponin I. Protein Sci. 1992 Dec;1(12):1595–1603. doi: 10.1002/pro.5560011207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Strynadka N. C., James M. N. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem. 1989;58:951–998. doi: 10.1146/annurev.bi.58.070189.004511. [DOI] [PubMed] [Google Scholar]
  31. Sweeney H. L., Brito R. M., Rosevear P. R., Putkey J. A. The low-affinity Ca2(+)-binding sites in cardiac/slow skeletal muscle troponin C perform distinct functions: site I alone cannot trigger contraction. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9538–9542. doi: 10.1073/pnas.87.24.9538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Swenson C. A., Fredricksen R. S. Interaction of troponin C and troponin C fragments with troponin I and the troponin I inhibitory peptide. Biochemistry. 1992 Apr 7;31(13):3420–3429. doi: 10.1021/bi00128a017. [DOI] [PubMed] [Google Scholar]
  33. Taylor D. A., Sack J. S., Maune J. F., Beckingham K., Quiocho F. A. Structure of a recombinant calmodulin from Drosophila melanogaster refined at 2.2-A resolution. J Biol Chem. 1991 Nov 15;266(32):21375–21380. doi: 10.2210/pdb4cln/pdb. [DOI] [PubMed] [Google Scholar]
  34. Wang Z. Y., Sarkar S., Gergely J., Tao T. Ca2(+)-dependent interactions between the C-helix of troponin-C and troponin-I. Photocross-linking and fluorescence studies using a recombinant troponin-C. J Biol Chem. 1990 Mar 25;265(9):4953–4957. [PubMed] [Google Scholar]
  35. Weiner H. Interaction of a spin-labeled analog of nicotinamide-adenine dinucleotide with alcohol dehydrogenase. I. Synthesis, kinetics, and electron paramagnetic resonance studies. Biochemistry. 1969 Feb;8(2):526–533. doi: 10.1021/bi00830a011. [DOI] [PubMed] [Google Scholar]
  36. Zot H. G., Potter J. D. A structural role for the Ca2+-Mg2+ sites on troponin C in the regulation of muscle contraction. Preparation and properties of troponin C depleted myofibrils. J Biol Chem. 1982 Jul 10;257(13):7678–7683. [PubMed] [Google Scholar]
  37. van Eerd J. P., Takahshi K. Determination of the complete amino acid sequence of bovine cardiac troponin C. Biochemistry. 1976 Mar 9;15(5):1171–1180. doi: 10.1021/bi00650a033. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES