Abstract
Farnesyl-protein transferase (FPTase) catalyzes the posttranslational farnesylation of the cysteine residue located in the carboxyl-terminal tetrapeptide of the Ras oncoprotein. Prenylation of this residue is essential for the membrane association and cell-transforming activities of ras. Inhibitors of FPTase have been demonstrated to inhibit ras-dependent cell transformation and thus represent a potential therapeutic strategy for the treatment of human cancers. The FPTase-bound conformation of a tetrapeptide inhibitor, CVWM, and a novel pseudopeptide inhibitor, L-739,787, have been determined by NMR spectroscopy. Distance constraints were derived from two-dimensional transferred nuclear Overhauser effect experiments. Ligand competition experiments identified the NOEs that originate from the active-site conformation. Structures were calculated with the combination of distance geometry and restrained energy minimization. Both peptide backbones are shown to adopt nonideal reverse-turn conformations most closely approximating a type III beta-turn. These results provide a basis for understanding the spatial arrangements necessary for inhibitor binding and selectivity and may aid in the design of therapeutic agents.
Full Text
The Full Text of this article is available as a PDF (4.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allard P., Kuprin S., Ehrenberg A. Conformation of dCDP bound to protein R1 of Escherichia coli ribonucleotide reductase. J Magn Reson B. 1994 Mar;103(3):242–246. doi: 10.1006/jmrb.1994.1036. [DOI] [PubMed] [Google Scholar]
- Campbell A. P., Van Eyk J. E., Hodges R. S., Sykes B. D. Interaction of troponin I and troponin C: use of the two-dimensional transferred nuclear Overhauser effect to determine the structure of a Gly-110 inhibitory troponin I peptide analog when bound to cardiac troponin C. Biochim Biophys Acta. 1992 Nov 10;1160(1):35–54. doi: 10.1016/0167-4838(92)90036-d. [DOI] [PubMed] [Google Scholar]
- Chen W. J., Andres D. A., Goldstein J. L., Brown M. S. Cloning and expression of a cDNA encoding the alpha subunit of rat p21ras protein farnesyltransferase. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11368–11372. doi: 10.1073/pnas.88.24.11368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clore G. M., Gronenborn A. M., Carlson G., Meyer E. F. Stereochemistry of binding of the tetrapeptide acetyl-Pro-Ala-Pro-Tyr-NH2 to porcine pancreatic elastase. Combined use of two-dimensional transferred nuclear Overhauser enhancement measurements, restrained molecular dynamics, X-ray crystallography and molecular modelling. J Mol Biol. 1986 Jul 20;190(2):259–267. doi: 10.1016/0022-2836(86)90297-4. [DOI] [PubMed] [Google Scholar]
- Cox A. D., Der C. J. Protein prenylation: more than just glue? Curr Opin Cell Biol. 1992 Dec;4(6):1008–1016. doi: 10.1016/0955-0674(92)90133-w. [DOI] [PubMed] [Google Scholar]
- Freidinger R. M., Brady S. F., Paleveda W. J., Perlow D. S., Colton C. D., Whitter W. L., Saperstein R., Brady E. J., Cascieri M. A., Veber D. F. Synthesis of new peptides based on models of receptor-bound conformation. Psychopharmacol Ser. 1987;3:12–19. doi: 10.1007/978-3-642-71288-3_2. [DOI] [PubMed] [Google Scholar]
- Gibbs J. B., Oliff A., Kohl N. E. Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic. Cell. 1994 Apr 22;77(2):175–178. doi: 10.1016/0092-8674(94)90308-5. [DOI] [PubMed] [Google Scholar]
- Gibbs J. B. Ras C-terminal processing enzymes--new drug targets? Cell. 1991 Apr 5;65(1):1–4. doi: 10.1016/0092-8674(91)90352-y. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Brown M. S., Stradley S. J., Reiss Y., Gierasch L. M. Nonfarnesylated tetrapeptide inhibitors of protein farnesyltransferase. J Biol Chem. 1991 Aug 25;266(24):15575–15578. [PubMed] [Google Scholar]
- Graham S. L., deSolms S. J., Giuliani E. A., Kohl N. E., Mosser S. D., Oliff A. I., Pompliano D. L., Rands E., Breslin M. J., Deana A. A. Pseudopeptide inhibitors of Ras farnesyl-protein transferase. J Med Chem. 1994 Mar 18;37(6):725–732. doi: 10.1021/jm00032a004. [DOI] [PubMed] [Google Scholar]
- Hancock J. F., Magee A. I., Childs J. E., Marshall C. J. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell. 1989 Jun 30;57(7):1167–1177. doi: 10.1016/0092-8674(89)90054-8. [DOI] [PubMed] [Google Scholar]
- James G. L., Goldstein J. L., Brown M. S., Rawson T. E., Somers T. C., McDowell R. S., Crowley C. W., Lucas B. K., Levinson A. D., Marsters J. C., Jr Benzodiazepine peptidomimetics: potent inhibitors of Ras farnesylation in animal cells. Science. 1993 Jun 25;260(5116):1937–1942. doi: 10.1126/science.8316834. [DOI] [PubMed] [Google Scholar]
- Jarori G. K., Murali N., Rao B. D. Two-dimensional transferred nuclear Overhauser effect spectroscopy study of the confirmation of MgATP bound at the active and ancillary sites of rabbit muscle pyruvate kinase. Biochemistry. 1994 Jun 7;33(22):6784–6791. doi: 10.1021/bi00188a006. [DOI] [PubMed] [Google Scholar]
- Kohl N. E., Mosser S. D., deSolms S. J., Giuliani E. A., Pompliano D. L., Graham S. L., Smith R. L., Scolnick E. M., Oliff A., Gibbs J. B. Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science. 1993 Jun 25;260(5116):1934–1937. doi: 10.1126/science.8316833. [DOI] [PubMed] [Google Scholar]
- Kohl N. E., Wilson F. R., Mosser S. D., Giuliani E., deSolms S. J., Conner M. W., Anthony N. J., Holtz W. J., Gomez R. P., Lee T. J. Protein farnesyltransferase inhibitors block the growth of ras-dependent tumors in nude mice. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9141–9145. doi: 10.1073/pnas.91.19.9141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landry S. J., Jordan R., McMacken R., Gierasch L. M. Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Nature. 1992 Jan 30;355(6359):455–457. doi: 10.1038/355455a0. [DOI] [PubMed] [Google Scholar]
- Lowy D. R., Willumsen B. M. Function and regulation of ras. Annu Rev Biochem. 1993;62:851–891. doi: 10.1146/annurev.bi.62.070193.004223. [DOI] [PubMed] [Google Scholar]
- Malikayil J. A., Edwards J. V., McLean L. R. Micelle-bound conformations of a bombesin/gastrin releasing peptide receptor agonist and an antagonist by two-dimensional NMR and restrained molecular dynamics. Biochemistry. 1992 Aug 11;31(31):7043–7049. doi: 10.1021/bi00146a004. [DOI] [PubMed] [Google Scholar]
- Moores S. L., Schaber M. D., Mosser S. D., Rands E., O'Hara M. B., Garsky V. M., Marshall M. S., Pompliano D. L., Gibbs J. B. Sequence dependence of protein isoprenylation. J Biol Chem. 1991 Aug 5;266(22):14603–14610. [PubMed] [Google Scholar]
- Murali N., Jarori G. K., Landy S. B., Rao B. D. Two-dimensional transferred nuclear Overhauser effect spectroscopy (TRNOESY) studies of nucleotide conformations in creatine kinase complexes: effects due to weak nonspecific binding. Biochemistry. 1993 Nov 30;32(47):12941–12948. doi: 10.1021/bi00210a049. [DOI] [PubMed] [Google Scholar]
- Ni F., Zhu Y. Accounting for ligand-protein interactions in the relaxation-matrix analysis of transferred nuclear Overhauser effects. J Magn Reson B. 1994 Feb;103(2):180–184. doi: 10.1006/jmrb.1994.1027. [DOI] [PubMed] [Google Scholar]
- Nigam M., Seong C. M., Qian Y., Hamilton A. D., Sebti S. M. Potent inhibition of human tumor p21ras farnesyltransferase by A1A2-lacking p21ras CA1A2X peptidomimetics. J Biol Chem. 1993 Oct 5;268(28):20695–20698. [PubMed] [Google Scholar]
- Omer C. A., Kral A. M., Diehl R. E., Prendergast G. C., Powers S., Allen C. M., Gibbs J. B., Kohl N. E. Characterization of recombinant human farnesyl-protein transferase: cloning, expression, farnesyl diphosphate binding, and functional homology with yeast prenyl-protein transferases. Biochemistry. 1993 May 18;32(19):5167–5176. doi: 10.1021/bi00070a028. [DOI] [PubMed] [Google Scholar]
- Perlman M. E., Davis D. G., Koszalka G. W., Tuttle J. V., London R. E. Studies of inhibitor binding to Escherichia coli purine nucleoside phosphorylase using the transferred nuclear Overhauser effect and rotating-frame nuclear Overhauser enhancement. Biochemistry. 1994 Jun 21;33(24):7547–7559. doi: 10.1021/bi00190a007. [DOI] [PubMed] [Google Scholar]
- Qian Y., Blaskovich M. A., Saleem M., Seong C. M., Wathen S. P., Hamilton A. D., Sebti S. M. Design and structural requirements of potent peptidomimetic inhibitors of p21ras farnesyltransferase. J Biol Chem. 1994 Apr 29;269(17):12410–12413. [PubMed] [Google Scholar]
- Reiss Y., Goldstein J. L., Seabra M. C., Casey P. J., Brown M. S. Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell. 1990 Jul 13;62(1):81–88. doi: 10.1016/0092-8674(90)90242-7. [DOI] [PubMed] [Google Scholar]
- Reiss Y., Stradley S. J., Gierasch L. M., Brown M. S., Goldstein J. L. Sequence requirement for peptide recognition by rat brain p21ras protein farnesyltransferase. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):732–736. doi: 10.1073/pnas.88.3.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stradley S. J., Rizo J., Gierasch L. M. Conformation of a heptapeptide substrate bound to protein farnesyltransferase. Biochemistry. 1993 Nov 30;32(47):12586–12590. doi: 10.1021/bi00210a006. [DOI] [PubMed] [Google Scholar]
- Williams J. S., Rosevear P. R. Nuclear Overhauser effect studies on the conformations of Mg(alpha,beta-methylene)ATP bound to Escherichia coli methionyl-tRNA synthetase. J Biol Chem. 1991 Feb 5;266(4):2089–2098. [PubMed] [Google Scholar]
