Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Apr;4(4):791–803. doi: 10.1002/pro.5560040419

Site-specific detection and structural characterization of the glycosylation of human plasma proteins lecithin:cholesterol acyltransferase and apolipoprotein D using HPLC/electrospray mass spectrometry and sequential glycosidase digestion.

P A Schindler 1, C A Settineri 1, X Collet 1, C J Fielding 1, A L Burlingame 1
PMCID: PMC2143102  PMID: 7613477

Abstract

Site-specific structural characterization of the glycosylation of human lecithin:cholesterol acyltransferase (LCAT) was carried out using microbore reversed-phase high performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC/ESIMS). A recently described mass spectrometric technique involving monitoring of carbohydrate-specific fragment ions during HPLC/ESIMS was employed to locate eight different groups of glycopeptides in a digest of a human LCAT protein preparation. In addition to the four expected N-linked glycopeptides of LCAT, a di-O-linked glycopeptide was detected, as well as three additional glycopeptides. Structural information on the oligosaccharides from all eight glycopeptides was obtained by sequential glycosidase digestion of the glycopeptides followed by HPLC/ESIMS. All four potential N-linked glycosylation sites (Asn20, Asn84, Asn272, and Asn384) of LCAT were determined to contain sialylated triantennary and/or biantennary complex structures. Two unanticipated O-linked glycosylation sites were identified at Thr407 and Ser409 of the LCAT O-linked glycopeptide, each of which contain sialylated galactose beta 1-->3N-acetylgalactosamine structures. The three additional glycopeptides were determined to be from a copurifying protein, apolipoprotein D, which contains potential N-linked glycosylation sites at Asn45 and Asn78. These glycopeptides were determined to bear sialylated triantennary oligosaccharides or fucosylated sialylated biantennary oligosaccharides. Previous studies of LCAT indicated that removal of the glycosylation site at Asn272 converts this protein to a phospholipase (Francone OL, Evangelista L, Fielding CJ, 1993, Biochim Biophys Acta 1166:301-304). Our results indicate that the carbohydrate structures themselves are not the source of this functional discrimination; rather, it must be mediated by the structural environment around Asn272.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albers J. J., Cabana V. G., Dee Barden Stahl Y. Purification and characterization of human plasma lecithin:cholesterol acyltransferase. Biochemistry. 1976 Mar 9;15(5):1084–1087. doi: 10.1021/bi00650a020. [DOI] [PubMed] [Google Scholar]
  2. Aron L., Jones S., Fielding C. J. Human plasma lecithin-cholesterol acyltransferase. Characterization of cofactor-dependent phospholipase activity. J Biol Chem. 1978 Oct 25;253(20):7220–7226. [PubMed] [Google Scholar]
  3. Bause E., Hettkamp H. Primary structural requirements for N-glycosylation of peptides in rat liver. FEBS Lett. 1979 Dec 15;108(2):341–344. doi: 10.1016/0014-5793(79)80559-1. [DOI] [PubMed] [Google Scholar]
  4. Burlingame A. L., Baillie T. A., Russell D. H. Mass spectrometry. Anal Chem. 1992 Jun 15;64(12):467R–502R. doi: 10.1021/ac00036a025. [DOI] [PubMed] [Google Scholar]
  5. Carr S. A., Hemling M. E., Bean M. F., Roberts G. D. Integration of mass spectrometry in analytical biotechnology. Anal Chem. 1991 Dec 15;63(24):2802–2824. doi: 10.1021/ac00024a003. [DOI] [PubMed] [Google Scholar]
  6. Carr S. A., Hemling M. E., Folena-Wasserman G., Sweet R. W., Anumula K., Barr J. R., Huddleston M. J., Taylor P. Protein and carbohydrate structural analysis of a recombinant soluble CD4 receptor by mass spectrometry. J Biol Chem. 1989 Dec 15;264(35):21286–21295. [PubMed] [Google Scholar]
  7. Carr S. A., Huddleston M. J., Bean M. F. Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry. Protein Sci. 1993 Feb;2(2):183–196. doi: 10.1002/pro.5560020207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chong K. S., Jahani M., Hara S., Lacko A. G. Characterization of lecithin-cholesterol acyltransferase from human plasma. 3. Chemical properties of the enzyme. Can J Biochem Cell Biol. 1983 Aug;61(8):875–881. doi: 10.1139/o83-112. [DOI] [PubMed] [Google Scholar]
  9. Chung J., Abano D. A., Fless G. M., Scanu A. M. Isolation, properties, and mechanism of in vitro action of lecithin: cholesterol acyltransferase from human plasma. J Biol Chem. 1979 Aug 10;254(15):7456–7464. [PubMed] [Google Scholar]
  10. Collet X., Fielding C. J. Effects of inhibitors of N-linked oligosaccharide processing on the secretion, stability, and activity of lecithin:cholesterol acyltransferase. Biochemistry. 1991 Apr 2;30(13):3228–3234. doi: 10.1021/bi00227a010. [DOI] [PubMed] [Google Scholar]
  11. Conradt H. S., Nimtz M., Dittmar K. E., Lindenmaier W., Hoppe J., Hauser H. Expression of human interleukin-2 in recombinant baby hamster kidney, Ltk-, and Chinese hamster ovary cells. Structure of O-linked carbohydrate chains and their location within the polypeptide. J Biol Chem. 1989 Oct 15;264(29):17368–17373. [PubMed] [Google Scholar]
  12. Cumming D. A., Hellerqvist C. G., Harris-Brandts M., Michnick S. W., Carver J. P., Bendiak B. Structures of asparagine-linked oligosaccharides of the glycoprotein fetuin having sialic acid linked to N-acetylglucosamine. Biochemistry. 1989 Jul 25;28(15):6500–6512. doi: 10.1021/bi00441a051. [DOI] [PubMed] [Google Scholar]
  13. Dell A. Preparation and desorption mass spectrometry of permethyl and peracetyl derivatives of oligosaccharides. Methods Enzymol. 1990;193:647–660. doi: 10.1016/0076-6879(90)93443-o. [DOI] [PubMed] [Google Scholar]
  14. Elder J. H., Alexander S. endo-beta-N-acetylglucosaminidase F: endoglycosidase from Flavobacterium meningosepticum that cleaves both high-mannose and complex glycoproteins. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4540–4544. doi: 10.1073/pnas.79.15.4540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fenn J. B., Mann M., Meng C. K., Wong S. F., Whitehouse C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989 Oct 6;246(4926):64–71. doi: 10.1126/science.2675315. [DOI] [PubMed] [Google Scholar]
  16. Green E. D., Adelt G., Baenziger J. U., Wilson S., Van Halbeek H. The asparagine-linked oligosaccharides on bovine fetuin. Structural analysis of N-glycanase-released oligosaccharides by 500-megahertz 1H NMR spectroscopy. J Biol Chem. 1988 Dec 5;263(34):18253–18268. [PubMed] [Google Scholar]
  17. Huddleston M. J., Bean M. F., Carr S. A. Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal Chem. 1993 Apr 1;65(7):877–884. doi: 10.1021/ac00055a009. [DOI] [PubMed] [Google Scholar]
  18. Hunkapiller M. W., Hewick R. M., Dreyer W. J., Hood L. E. High-sensitivity sequencing with a gas-phase sequenator. Methods Enzymol. 1983;91:399–413. doi: 10.1016/s0076-6879(83)91038-8. [DOI] [PubMed] [Google Scholar]
  19. Kobata A. Use of endo- and exoglycosidases for structural studies of glycoconjugates. Anal Biochem. 1979 Nov 15;100(1):1–14. doi: 10.1016/0003-2697(79)90102-7. [DOI] [PubMed] [Google Scholar]
  20. Kornfeld R., Kornfeld S. Comparative aspects of glycoprotein structure. Annu Rev Biochem. 1976;45:217–237. doi: 10.1146/annurev.bi.45.070176.001245. [DOI] [PubMed] [Google Scholar]
  21. Loo J. A., Udseth H. R., Smith R. D. Peptide and protein analysis by electrospray ionization-mass spectrometry and capillary electrophoresis-mass spectrometry. Anal Biochem. 1989 Jun;179(2):404–412. doi: 10.1016/0003-2697(89)90153-x. [DOI] [PubMed] [Google Scholar]
  22. McLean J., Fielding C., Drayna D., Dieplinger H., Baer B., Kohr W., Henzel W., Lawn R. Cloning and expression of human lecithin-cholesterol acyltransferase cDNA. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2335–2339. doi: 10.1073/pnas.83.8.2335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nimtz M., Martin W., Wray V., Klöppel K. D., Augustin J., Conradt H. S. Structures of sialylated oligosaccharides of human erythropoietin expressed in recombinant BHK-21 cells. Eur J Biochem. 1993 Apr 1;213(1):39–56. doi: 10.1111/j.1432-1033.1993.tb17732.x. [DOI] [PubMed] [Google Scholar]
  24. Poulter L., Karrer R., Burlingame A. L. n-Alkyl p-aminobenzoates as derivatizing agents in the isolation, separation, and characterization of submicrogram quantities of oligosaccharides by liquid secondary ion mass spectrometry. Anal Biochem. 1991 May 15;195(1):1–13. doi: 10.1016/0003-2697(91)90286-3. [DOI] [PubMed] [Google Scholar]
  25. Siegel M. M., Hollander I. J., Hamann P. R., James J. P., Hinman L., Smith B. J., Farnsworth A. P., Phipps A., King D. J., Karas M. Matrix-assisted UV-laser desorption/ionization mass spectrometric analysis of monoclonal antibodies for the determination of carbohydrate, conjugated chelator, and conjugated drug content. Anal Chem. 1991 Nov 1;63(21):2470–2481. doi: 10.1021/ac00021a016. [DOI] [PubMed] [Google Scholar]
  26. Smith R. D., Loo J. A., Edmonds C. G., Barinaga C. J., Udseth H. R. New developments in biochemical mass spectrometry: electrospray ionization. Anal Chem. 1990 May 1;62(9):882–899. doi: 10.1021/ac00208a002. [DOI] [PubMed] [Google Scholar]
  27. Tarentino A. L., Plummer T. H., Jr, Maley F. The release of intact oligosaccharides from specific glycoproteins by endo-beta-N-acetylglucosaminidase H. J Biol Chem. 1974 Feb 10;249(3):818–824. [PubMed] [Google Scholar]
  28. Trimble R. B., Tarentino A. L. Identification of distinct endoglycosidase (endo) activities in Flavobacterium meningosepticum: endo F1, endo F2, and endo F3. Endo F1 and endo H hydrolyze only high mannose and hybrid glycans. J Biol Chem. 1991 Jan 25;266(3):1646–1651. [PubMed] [Google Scholar]
  29. Uchida Y., Tsukada Y., Sugimori T. Enzymatic properties of neuraminidases from Arthrobacter ureafaciens. J Biochem. 1979 Nov;86(5):1573–1585. doi: 10.1093/oxfordjournals.jbchem.a132675. [DOI] [PubMed] [Google Scholar]
  30. Umemoto J., Bhavanandan V. P., Davidson E. A. Purification and properties of an endo-alpha-N-acetyl-D-galactosaminidase from Diplococcus pneumoniae. J Biol Chem. 1977 Dec 10;252(23):8609–8614. [PubMed] [Google Scholar]
  31. Utermann G., Menzel H. J., Adler G., Dieker P., Weber W. Substitution in vitro of lecithin-cholesterol acyltransferase. Analysis of changes in plasma lipoproteins. Eur J Biochem. 1980;107(1):225–241. doi: 10.1111/j.1432-1033.1980.tb04643.x. [DOI] [PubMed] [Google Scholar]
  32. Wilson I. B., Gavel Y., von Heijne G. Amino acid distributions around O-linked glycosylation sites. Biochem J. 1991 Apr 15;275(Pt 2):529–534. doi: 10.1042/bj2750529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yang C. Y., Manoogian D., Pao Q., Lee F. S., Knapp R. D., Gotto A. M., Jr, Pownall H. J. Lecithin:cholesterol acyltransferase. Functional regions and a structural model of the enzyme. J Biol Chem. 1987 Mar 5;262(7):3086–3091. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES