Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Apr;4(4):747–755. doi: 10.1002/pro.5560040414

Carbohydrate binding sites in a pancreatic alpha-amylase-substrate complex, derived from X-ray structure analysis at 2.1 A resolution.

M Qian 1, R Haser 1, F Payan 1
PMCID: PMC2143103  PMID: 7613472

Abstract

The X-ray structure analysis of a crystal of pig pancreatic alpha-amylase (PPA, EC 3.2.1.1.) that was soaked with the substrate maltopentaose showed electron density corresponding to two independent carbohydrate recognition sites on the surface of the molecule. Both binding sites are distinct from the active site described in detail in our previous high-resolution study of a complex between PPA and a carbohydrate inhibitor (Qian M, Buisson G, Duée E, Haser H, Payan F, 1994, Biochemistry 33:6284-6294). One of the binding sites previously identified in a 5-A-resolution electron density map, lies at a distance of 20 A from the active site cleft and can accommodate two glucose units. The second affinity site for sugar units is located close to the calcium binding site. The crystal structure of the maltopentaose complex was refined at 2.1 A resolution, to an R-factor of 17.5%, with an RMS deviation in bond distances of 0.007 A. The model includes all 496 residues of the enzyme, 1 calcium ion, 1 chloride ion, 425 water molecules, and 3 bound sugar rings. The binding sites are characterized and described in detail. The present complex structure provides the evidence of an increased stability of the structure upon interaction with the substrate and allows identification of an N-terminal pyrrolidonecarboxylic acid in PPA.

Full Text

The Full Text of this article is available as a PDF (840.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brady R. L., Brzozowski A. M., Derewenda Z. S., Dodson E. J., Dodson G. G. Solution of the structure of Aspergillus niger acid alpha-amylase by combined molecular replacement and multiple isomorphous replacement methods. Acta Crystallogr B. 1991 Aug 1;47(Pt 4):527–535. doi: 10.1107/s0108768191001908. [DOI] [PubMed] [Google Scholar]
  2. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  3. Buisson G., Duée E., Haser R., Payan F. Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity. EMBO J. 1987 Dec 20;6(13):3909–3916. doi: 10.1002/j.1460-2075.1987.tb02731.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cozzone P., Paséro L., Marchis-Mouren G. Characterization of porcine pancreatic isoamylases: separation and amino acid composition. Biochim Biophys Acta. 1970 Mar 31;200(3):590–593. doi: 10.1016/0005-2795(70)90121-2. [DOI] [PubMed] [Google Scholar]
  5. Desseaux V., Payan F., Ajandouz E. H., Svensson B., Haser R., Marchis-Mouren G. Effect of limited proteolysis in the 8th loop of the barrel and of antibodies on porcine pancreas amylase activity. Biochim Biophys Acta. 1991 Nov 15;1080(3):237–244. doi: 10.1016/0167-4838(91)90008-n. [DOI] [PubMed] [Google Scholar]
  6. Ishikawa K., Matsui I., Kobayashi S., Nakatani H., Honda K. Substrate recognition at the binding site in mammalian pancreatic alpha-amylases. Biochemistry. 1993 Jun 22;32(24):6259–6265. doi: 10.1021/bi00075a020. [DOI] [PubMed] [Google Scholar]
  7. Johnson L. N., Cheetham J., McLaughlin P. J., Acharya K. R., Barford D., Phillips D. C. Protein-oligosaccharide interactions: lysozyme, phosphorylase, amylases. Curr Top Microbiol Immunol. 1988;139:81–134. doi: 10.1007/978-3-642-46641-0_4. [DOI] [PubMed] [Google Scholar]
  8. Kadziola A., Abe J., Svensson B., Haser R. Crystal and molecular structure of barley alpha-amylase. J Mol Biol. 1994 May 27;239(1):104–121. doi: 10.1006/jmbi.1994.1354. [DOI] [PubMed] [Google Scholar]
  9. Kluh I. Amino acid sequence of hog pancreatic alpha-amylase isoenzyme I. FEBS Lett. 1981 Dec 28;136(2):231–234. doi: 10.1016/0014-5793(81)80624-2. [DOI] [PubMed] [Google Scholar]
  10. Lawson C. L., van Montfort R., Strokopytov B., Rozeboom H. J., Kalk K. H., de Vries G. E., Penninga D., Dijkhuizen L., Dijkstra B. W. Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form. J Mol Biol. 1994 Feb 18;236(2):590–600. doi: 10.1006/jmbi.1994.1168. [DOI] [PubMed] [Google Scholar]
  11. Levitzki A., Steer M. L. The allosteric activation of mammalian alpha-amylase by chloride. Eur J Biochem. 1974 Jan 3;41(1):171–180. doi: 10.1111/j.1432-1033.1974.tb03257.x. [DOI] [PubMed] [Google Scholar]
  12. Loyter A., Schramm M. Multimolecular complexes of alpha-amylase with glycogen limit dextrin. Number of binding sites of the enzyme and size of the complexes. J Biol Chem. 1966 Jun 10;241(11):2611–2617. [PubMed] [Google Scholar]
  13. Pasero L., Mazzéi-Pierron Y., Abadie B., Chicheportiche Y., Marchis-Mouren G. Complete amino acid sequence and location of the five disulfide bridges in porcine pancreatic alpha-amylase. Biochim Biophys Acta. 1986 Jan 30;869(2):147–157. doi: 10.1016/0167-4838(86)90289-x. [DOI] [PubMed] [Google Scholar]
  14. Qian M., Haser R., Buisson G., Duée E., Payan F. The active center of a mammalian alpha-amylase. Structure of the complex of a pancreatic alpha-amylase with a carbohydrate inhibitor refined to 2.2-A resolution. Biochemistry. 1994 May 24;33(20):6284–6294. doi: 10.1021/bi00186a031. [DOI] [PubMed] [Google Scholar]
  15. Qian M., Haser R., Payan F. Structure and molecular model refinement of pig pancreatic alpha-amylase at 2.1 A resolution. J Mol Biol. 1993 Jun 5;231(3):785–799. doi: 10.1006/jmbi.1993.1326. [DOI] [PubMed] [Google Scholar]
  16. Robyt J. F., French D. Multiple attack and polarity of action of porcine pancreatic alpha-amylase. Arch Biochem Biophys. 1970 Jun;138(2):662–670. doi: 10.1016/0003-9861(70)90394-2. [DOI] [PubMed] [Google Scholar]
  17. Steer M. L., Levitzki A. The metal specificity of mammalian -amylase as revealed by enzyme activity and structural probes. FEBS Lett. 1973 Apr 1;31(1):89–92. doi: 10.1016/0014-5793(73)80079-1. [DOI] [PubMed] [Google Scholar]
  18. Swift H. J., Brady L., Derewenda Z. S., Dodson E. J., Dodson G. G., Turkenburg J. P., Wilkinson A. J. Structure and molecular model refinement of Aspergillus oryzae (TAKA) alpha-amylase: an application of the simulated-annealing method. Acta Crystallogr B. 1991 Aug 1;47(Pt 4):535–544. doi: 10.1107/s0108768191001970. [DOI] [PubMed] [Google Scholar]
  19. VALLEE B. L., STEIN E. A., SUMERWELL W. N., FISCHER E. H. Metal content of alpha-amylases of various origins. J Biol Chem. 1959 Nov;234:2901–2905. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES