Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Apr;4(4):716–728. doi: 10.1002/pro.5560040411

Secondary and tertiary structure of the A-state of cytochrome c from resonance Raman spectroscopy.

T Jordan 1, J C Eads 1, T G Spiro 1
PMCID: PMC2143105  PMID: 7613469

Abstract

Ferricytochrome c can be converted to the partially folded A-state at pH 2.2 in the presence of 1.5 M NaCl. The structure of the A-state has been studied in comparison with the native and unfolded states, using resonance Raman spectroscopy with visible and ultraviolet excitation wavelengths. Spectra obtained with 200 nm excitation show a decrease in amide II intensity consistent with loss of structure for the 50s and 70s helices. The 230-nm spectra contain information on vibrational modes of the single Trp 59 side chain and the four tyrosine side chains (Tyr 48, 67, 74, and 97). The Trp 59 modes indicate that the side chain remains in a hydrophobic environment but loses its tertiary hydrogen bond and is rotationally disordered. The tyrosine modes Y8b and Y9a show disruption of tertiary hydrogen bonding for the Tyr 48, 67, and 74 side chains. The high-wavenumber region of the 406.7-nm resonance Raman spectrum reveals a mixed spin heme iron atom, which arises from axial coordination to His 18 and a water molecule. The low-frequency spectral region reports on heme distortions and indicates a reduced degree of interaction between the heme and the polypeptide chain. A structural model for the A-state is proposed in which a folded protein subdomain, consisting of the heme and the N-terminal, C-terminal, and 60s helices, is stabilized through nonbonding interactions between helices and with the heme.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asher S. A., Schuster T. M. Resonance Raman examination of axial ligand bonding and spin-state equilibria in metmyoglobin hydroxide and other heme derivatives. Biochemistry. 1979 Nov 27;18(24):5377–5387. doi: 10.1021/bi00591a019. [DOI] [PubMed] [Google Scholar]
  2. Baker E. N., Hubbard R. E. Hydrogen bonding in globular proteins. Prog Biophys Mol Biol. 1984;44(2):97–179. doi: 10.1016/0079-6107(84)90007-5. [DOI] [PubMed] [Google Scholar]
  3. Christensen H., Pain R. H. Molten globule intermediates and protein folding. Eur Biophys J. 1991;19(5):221–229. doi: 10.1007/BF00183530. [DOI] [PubMed] [Google Scholar]
  4. Chyan C. L., Wormald C., Dobson C. M., Evans P. A., Baum J. Structure and stability of the molten globule state of guinea-pig alpha-lactalbumin: a hydrogen exchange study. Biochemistry. 1993 Jun 1;32(21):5681–5691. doi: 10.1021/bi00072a025. [DOI] [PubMed] [Google Scholar]
  5. Copeland R. A., Spiro T. G. Ultraviolet resonance Raman spectra of cytochrome c conformational states. Biochemistry. 1985 Aug 27;24(18):4960–4968. doi: 10.1021/bi00339a035. [DOI] [PubMed] [Google Scholar]
  6. Dill K. A., Shortle D. Denatured states of proteins. Annu Rev Biochem. 1991;60:795–825. doi: 10.1146/annurev.bi.60.070191.004051. [DOI] [PubMed] [Google Scholar]
  7. Dumont M. E., Corin A. F., Campbell G. A. Noncovalent binding of heme induces a compact apocytochrome c structure. Biochemistry. 1994 Jun 14;33(23):7368–7378. doi: 10.1021/bi00189a043. [DOI] [PubMed] [Google Scholar]
  8. Dyson H. J., Beattie J. K. Spin state and unfolding equilibria of ferricytochrome c in acidic solutions. J Biol Chem. 1982 Mar 10;257(5):2267–2273. [PubMed] [Google Scholar]
  9. Elöve G. A., Chaffotte A. F., Roder H., Goldberg M. E. Early steps in cytochrome c folding probed by time-resolved circular dichroism and fluorescence spectroscopy. Biochemistry. 1992 Aug 4;31(30):6876–6883. doi: 10.1021/bi00145a003. [DOI] [PubMed] [Google Scholar]
  10. Englander S. W., Mayne L. Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu Rev Biophys Biomol Struct. 1992;21:243–265. doi: 10.1146/annurev.bb.21.060192.001331. [DOI] [PubMed] [Google Scholar]
  11. Fisher W. R., Taniuchi H., Anfinsen C. B. On the role of heme in the formation of the structure of cytochrome c. J Biol Chem. 1973 May 10;248(9):3188–3195. [PubMed] [Google Scholar]
  12. Fredericks Z. L., Pielak G. J. Exploring the interface between the N- and C-terminal helices of cytochrome c by random mutagenesis within the C-terminal helix. Biochemistry. 1993 Jan 26;32(3):929–936. doi: 10.1021/bi00054a026. [DOI] [PubMed] [Google Scholar]
  13. Goto Y., Calciano L. J., Fink A. L. Acid-induced folding of proteins. Proc Natl Acad Sci U S A. 1990 Jan;87(2):573–577. doi: 10.1073/pnas.87.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goto Y., Hagihara Y., Hamada D., Hoshino M., Nishii I. Acid-induced unfolding and refolding transitions of cytochrome c: a three-state mechanism in H2O and D2O. Biochemistry. 1993 Nov 9;32(44):11878–11885. doi: 10.1021/bi00095a017. [DOI] [PubMed] [Google Scholar]
  15. Goto Y., Nishikiori S. Role of electrostatic repulsion in the acidic molten globule of cytochrome c. J Mol Biol. 1991 Dec 5;222(3):679–686. doi: 10.1016/0022-2836(91)90504-y. [DOI] [PubMed] [Google Scholar]
  16. Goto Y., Takahashi N., Fink A. L. Mechanism of acid-induced folding of proteins. Biochemistry. 1990 Apr 10;29(14):3480–3488. doi: 10.1021/bi00466a009. [DOI] [PubMed] [Google Scholar]
  17. Hagihara Y., Tan Y., Goto Y. Comparison of the conformational stability of the molten globule and native states of horse cytochrome c. Effects of acetylation, heat, urea and guanidine-hydrochloride. J Mol Biol. 1994 Apr 1;237(3):336–348. doi: 10.1006/jmbi.1994.1234. [DOI] [PubMed] [Google Scholar]
  18. Hamada D., Hoshino M., Kataoka M., Fink A. L., Goto Y. Intermediate conformational states of apocytochrome c. Biochemistry. 1993 Oct 5;32(39):10351–10358. doi: 10.1021/bi00090a010. [DOI] [PubMed] [Google Scholar]
  19. Hughson F. M., Wright P. E., Baldwin R. L. Structural characterization of a partly folded apomyoglobin intermediate. Science. 1990 Sep 28;249(4976):1544–1548. doi: 10.1126/science.2218495. [DOI] [PubMed] [Google Scholar]
  20. Ikeguchi M., Kuwajima K., Mitani M., Sugai S. Evidence for identity between the equilibrium unfolding intermediate and a transient folding intermediate: a comparative study of the folding reactions of alpha-lactalbumin and lysozyme. Biochemistry. 1986 Nov 4;25(22):6965–6972. doi: 10.1021/bi00370a034. [DOI] [PubMed] [Google Scholar]
  21. Jayaraman V., Rodgers K. R., Mukerji I., Spiro T. G. R and T states of fluoromethemoglobin probed by ultraviolet resonance Raman spectroscopy. Biochemistry. 1993 May 4;32(17):4547–4551. doi: 10.1021/bi00068a009. [DOI] [PubMed] [Google Scholar]
  22. Jeng M. F., Englander S. W., Elöve G. A., Wand A. J., Roder H. Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR. Biochemistry. 1990 Nov 20;29(46):10433–10437. doi: 10.1021/bi00498a001. [DOI] [PubMed] [Google Scholar]
  23. Jeng M. F., Englander S. W. Stable submolecular folding units in a non-compact form of cytochrome c. J Mol Biol. 1991 Oct 5;221(3):1045–1061. doi: 10.1016/0022-2836(91)80191-v. [DOI] [PubMed] [Google Scholar]
  24. Jennings P. A., Wright P. E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science. 1993 Nov 5;262(5135):892–896. doi: 10.1126/science.8235610. [DOI] [PubMed] [Google Scholar]
  25. Johnson W. C., Jr Protein secondary structure and circular dichroism: a practical guide. Proteins. 1990;7(3):205–214. doi: 10.1002/prot.340070302. [DOI] [PubMed] [Google Scholar]
  26. Kataoka M., Hagihara Y., Mihara K., Goto Y. Molten globule of cytochrome c studied by small angle X-ray scattering. J Mol Biol. 1993 Feb 5;229(3):591–596. doi: 10.1006/jmbi.1993.1064. [DOI] [PubMed] [Google Scholar]
  27. Kitagawa T., Nagai K. Quaternary structure-induced photoreduction of haem of haemoglobin. Nature. 1979 Oct 11;281(5731):503–504. doi: 10.1038/281503a0. [DOI] [PubMed] [Google Scholar]
  28. Krimm S., Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem. 1986;38:181–364. doi: 10.1016/s0065-3233(08)60528-8. [DOI] [PubMed] [Google Scholar]
  29. Kuroda Y., Kidokoro S., Wada A. Thermodynamic characterization of cytochrome c at low pH. Observation of the molten globule state and of the cold denaturation process. J Mol Biol. 1992 Feb 20;223(4):1139–1153. doi: 10.1016/0022-2836(92)90265-l. [DOI] [PubMed] [Google Scholar]
  30. Kuroda Y. Residual helical structure in the C-terminal fragment of cytochrome c. Biochemistry. 1993 Feb 9;32(5):1219–1224. doi: 10.1021/bi00056a004. [DOI] [PubMed] [Google Scholar]
  31. Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins. 1989;6(2):87–103. doi: 10.1002/prot.340060202. [DOI] [PubMed] [Google Scholar]
  32. Miura T., Takeuchi H., Harada I. Characterization of individual tryptophan side chains in proteins using Raman spectroscopy and hydrogen-deuterium exchange kinetics. Biochemistry. 1988 Jan 12;27(1):88–94. doi: 10.1021/bi00401a015. [DOI] [PubMed] [Google Scholar]
  33. Myer Y. P. Circular dichroism spectroscopy of hemoproteins. Methods Enzymol. 1978;54:249–284. doi: 10.1016/s0076-6879(78)54019-6. [DOI] [PubMed] [Google Scholar]
  34. Myer Y. P. Ferricytochrome c. Refolding and the methionine 80-sulfur-iron linkage. J Biol Chem. 1984 May 25;259(10):6127–6133. [PubMed] [Google Scholar]
  35. Myer Y. P., Saturno A. F. Horse heart ferricytochrome c: conformation and heme configuration of high ionic strength acidic forms. J Protein Chem. 1991 Oct;10(5):481–494. doi: 10.1007/BF01025476. [DOI] [PubMed] [Google Scholar]
  36. Nishii I., Kataoka M., Tokunaga F., Goto Y. Cold denaturation of the molten globule states of apomyoglobin and a profile for protein folding. Biochemistry. 1994 Apr 26;33(16):4903–4909. doi: 10.1021/bi00182a019. [DOI] [PubMed] [Google Scholar]
  37. Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
  38. Roder H., Elöve G. A., Englander S. W. Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature. 1988 Oct 20;335(6192):700–704. doi: 10.1038/335700a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sosnick T. R., Mayne L., Hiller R., Englander S. W. The barriers in protein folding. Nat Struct Biol. 1994 Mar;1(3):149–156. doi: 10.1038/nsb0394-149. [DOI] [PubMed] [Google Scholar]
  40. Spiro T. G. Resonance Raman spectroscopy as a probe of heme protein structure and dynamics. Adv Protein Chem. 1985;37:111–159. doi: 10.1016/s0065-3233(08)60064-9. [DOI] [PubMed] [Google Scholar]
  41. Stellwagen E., Rysavy R., Babul G. The conformation of horse heart apocytochrome c. J Biol Chem. 1972 Dec 25;247(24):8074–8077. [PubMed] [Google Scholar]
  42. Stigter D., Alonso D. O., Dill K. A. Protein stability: electrostatics and compact denatured states. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4176–4180. doi: 10.1073/pnas.88.10.4176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Strekas T. C., Spiro T. G. Resonance-raman evidence for anomalous heme structures in cytochrome c' from Rhodopseudomonas palustris. Biochim Biophys Acta. 1974 Jun 7;351(2):237–245. doi: 10.1016/0005-2795(74)90186-x. [DOI] [PubMed] [Google Scholar]
  44. Wand A. J., Englander S. W. Two-dimensional 1H NMR studies of cytochrome c: assignment of the N-terminal helix. Biochemistry. 1986 Mar 11;25(5):1100–1106. doi: 10.1021/bi00353a024. [DOI] [PubMed] [Google Scholar]
  45. Wand A. J., Roder H., Englander S. W. Two-dimensional 1H NMR studies of cytochrome c: hydrogen exchange in the N-terminal helix. Biochemistry. 1986 Mar 11;25(5):1107–1114. doi: 10.1021/bi00353a025. [DOI] [PubMed] [Google Scholar]
  46. Wood L. C., White T. B., Ramdas L., Nall B. T. Replacement of a conserved proline eliminates the absorbance-detected slow folding phase of iso-2-cytochrome c. Biochemistry. 1988 Nov 15;27(23):8562–8568. doi: 10.1021/bi00423a009. [DOI] [PubMed] [Google Scholar]
  47. Wu L. C., Laub P. B., Elöve G. A., Carey J., Roder H. A noncovalent peptide complex as a model for an early folding intermediate of cytochrome c. Biochemistry. 1993 Sep 28;32(38):10271–10276. doi: 10.1021/bi00089a050. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES