Abstract
Sites are microenvironments within a biomolecular structure, distinguished by their structural or functional role. A site can be defined by a three-dimensional location and a local neighborhood around this location in which the structure or function exists. We have developed a computer system to facilitate structural analysis (both qualitative and quantitative) of biomolecular sites. Our system automatically examines the spatial distributions of biophysical and biochemical properties, and reports those regions within a site where the distribution of these properties differs significantly from control nonsites. The properties range from simple atom-based characteristics such as charge to polypeptide-based characteristics such as type of secondary structure. Our analysis of sites uses non-sites as controls, providing a baseline for the quantitative assessment of the significance of the features that are uncovered. In this paper, we use radial distributions of properties to study three well-known sites (the binding sites for calcium, the milieu of disulfide bridges, and the serine protease active site). We demonstrate that the system automatically finds many of the previously described features of these sites and augments these features with some new details. In some cases, we cannot confirm the statistical significance of previously reported features. Our results demonstrate that analysis of protein structure is sensitive to assumptions about background distributions, and that these distributions should be considered explicitly during structural analyses.
Full Text
The Full Text of this article is available as a PDF (5.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barlow D. J., Thornton J. M. The distribution of charged groups in proteins. Biopolymers. 1986 Sep;25(9):1717–1733. doi: 10.1002/bip.360250913. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Bowie J. U., Lüthy R., Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991 Jul 12;253(5016):164–170. doi: 10.1126/science.1853201. [DOI] [PubMed] [Google Scholar]
- Bruck C., Co M. S., Slaoui M., Gaulton G. N., Smith T., Fields B. N., Mullins J. I., Greene M. I. Nucleic acid sequence of an internal image-bearing monoclonal anti-idiotype and its comparison to the sequence of the external antigen. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6578–6582. doi: 10.1073/pnas.83.17.6578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chakrabarti P. Anion binding sites in protein structures. J Mol Biol. 1993 Nov 20;234(2):463–482. doi: 10.1006/jmbi.1993.1599. [DOI] [PubMed] [Google Scholar]
- Chakrabarti P. Conformational analysis of carboxylate and carboxamide side-chains bound to cations. J Mol Biol. 1994 Jun 3;239(2):306–314. doi: 10.1006/jmbi.1994.1369. [DOI] [PubMed] [Google Scholar]
- Chakrabarti P. Interaction of metal ions with carboxylic and carboxamide groups in protein structures. Protein Eng. 1990 Oct;4(1):49–56. doi: 10.1093/protein/4.1.49. [DOI] [PubMed] [Google Scholar]
- Chandra M., McCubbin W. D., Oikawa K., Kay C. M., Smillie L. B. Ca2+, Mg2+, and troponin I inhibitory peptide binding to a Phe-154 to Trp mutant of chicken skeletal muscle troponin C. Biochemistry. 1994 Mar 15;33(10):2961–2969. doi: 10.1021/bi00176a028. [DOI] [PubMed] [Google Scholar]
- Cheung P., Reisler E. Synthetic peptide of the sequence 632-642 on myosin subfragment 1 inhibits actomyosin ATPase activity. Biochem Biophys Res Commun. 1992 Dec 15;189(2):1143–1149. doi: 10.1016/0006-291x(92)92323-p. [DOI] [PubMed] [Google Scholar]
- Doig P., Sastry P. A., Hodges R. S., Lee K. K., Paranchych W., Irvin R. T. Inhibition of pilus-mediated adhesion of Pseudomonas aeruginosa to human buccal epithelial cells by monoclonal antibodies directed against pili. Infect Immun. 1990 Jan;58(1):124–130. doi: 10.1128/iai.58.1.124-130.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiser A., Cserzö M., Tüdös E., Simon I. Different sequence environments of cysteines and half cystines in proteins. Application to predict disulfide forming residues. FEBS Lett. 1992 May 11;302(2):117–120. doi: 10.1016/0014-5793(92)80419-h. [DOI] [PubMed] [Google Scholar]
- Frelinger A. L., 3rd, Du X. P., Plow E. F., Ginsberg M. H. Monoclonal antibodies to ligand-occupied conformers of integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) alter receptor affinity, specificity, and function. J Biol Chem. 1991 Sep 15;266(26):17106–17111. [PubMed] [Google Scholar]
- Friedman A. R., Roberts V. A., Tainer J. A. Predicting molecular interactions and inducible complementarity: fragment docking of Fab-peptide complexes. Proteins. 1994 Sep;20(1):15–24. doi: 10.1002/prot.340200104. [DOI] [PubMed] [Google Scholar]
- Goodford P. J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem. 1985 Jul;28(7):849–857. doi: 10.1021/jm00145a002. [DOI] [PubMed] [Google Scholar]
- Greer J. Comparative modeling methods: application to the family of the mammalian serine proteases. Proteins. 1990;7(4):317–334. doi: 10.1002/prot.340070404. [DOI] [PubMed] [Google Scholar]
- Harper M., Lema F., Boulot G., Poljak R. J. Antigen specificity and cross-reactivity of monoclonal anti-lysozyme antibodies. Mol Immunol. 1987 Feb;24(2):97–108. doi: 10.1016/0161-5890(87)90081-2. [DOI] [PubMed] [Google Scholar]
- Ingraham R. H., Hodges R. S. Effects of Ca2+ and subunit interactions on surface accessibility of cysteine residues in cardiac troponin. Biochemistry. 1988 Aug 9;27(16):5891–5898. doi: 10.1021/bi00416a011. [DOI] [PubMed] [Google Scholar]
- Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
- Karlin S., Zuker M., Brocchieri L. Measuring residue associations in protein structures. Possible implications for protein folding. J Mol Biol. 1994 Jun 3;239(2):227–248. doi: 10.1006/jmbi.1994.1365. [DOI] [PubMed] [Google Scholar]
- Klingler T. M., Brutlag D. L. Discovering structural correlations in alpha-helices. Protein Sci. 1994 Oct;3(10):1847–1857. doi: 10.1002/pro.5560031024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koprowski H., Gerhard W., Croce C. M. Production of antibodies against influenza virus by somatic cell hybrids between mouse myeloma and primed spleen cells. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2985–2988. doi: 10.1073/pnas.74.7.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korn A. P., Burnett R. M. Distribution and complementarity of hydropathy in multisubunit proteins. Proteins. 1991;9(1):37–55. doi: 10.1002/prot.340090106. [DOI] [PubMed] [Google Scholar]
- Levine B. A., Moir A. J., Perry S. V. The interaction of troponin-I with the N-terminal region of actin. Eur J Biochem. 1988 Mar 1;172(2):389–397. doi: 10.1111/j.1432-1033.1988.tb13899.x. [DOI] [PubMed] [Google Scholar]
- Levitsky D. I., Shnyrov V. L., Khvorov N. V., Bukatina A. E., Vedenkina N. S., Permyakov E. A., Nikolaeva O. P., Poglazov B. F. Effects of nucleotide binding on thermal transitions and domain structure of myosin subfragment 1. Eur J Biochem. 1992 Nov 1;209(3):829–835. doi: 10.1111/j.1432-1033.1992.tb17354.x. [DOI] [PubMed] [Google Scholar]
- Linder M. E., Gilman A. G. G proteins. Sci Am. 1992 Jul;267(1):56-61, 64-5. doi: 10.1038/scientificamerican0792-56. [DOI] [PubMed] [Google Scholar]
- Mitchell J. B., Nandi C. L., McDonald I. K., Thornton J. M., Price S. L. Amino/aromatic interactions in proteins: is the evidence stacked against hydrogen bonding? J Mol Biol. 1994 Jun 3;239(2):315–331. doi: 10.1006/jmbi.1994.1370. [DOI] [PubMed] [Google Scholar]
- Mitchell P. J., Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science. 1989 Jul 28;245(4916):371–378. doi: 10.1126/science.2667136. [DOI] [PubMed] [Google Scholar]
- Parhami-Seren B., Wysocki L. J., Margolies M. N., Sharon J. Clustered H chain somatic mutations shared by anti-p-azophenylarsonate antibodies confer enhanced affinity and ablate the cross-reactive idiotype. J Immunol. 1990 Oct 1;145(7):2340–2346. [PubMed] [Google Scholar]
- Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
- Rooman M. J., Kocher J. P., Wodak S. J. Extracting information on folding from the amino acid sequence: accurate predictions for protein regions with preferred conformation in the absence of tertiary interactions. Biochemistry. 1992 Oct 27;31(42):10226–10238. doi: 10.1021/bi00157a009. [DOI] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Sekharudu Y. C., Sundaralingam M. A structure-function relationship for the calcium affinities of regulatory proteins containing 'EF-hand' pairs. Protein Eng. 1988 Jul;2(2):139–146. doi: 10.1093/protein/2.2.139. [DOI] [PubMed] [Google Scholar]
- Sippl M. J. Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol. 1990 Jun 20;213(4):859–883. doi: 10.1016/s0022-2836(05)80269-4. [DOI] [PubMed] [Google Scholar]
- Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
- Strong R. K., Campbell R., Rose D. R., Petsko G. A., Sharon J., Margolies M. N. Three-dimensional structure of murine anti-p-azophenylarsonate Fab 36-71. 1. X-ray crystallography, site-directed mutagenesis, and modeling of the complex with hapten. Biochemistry. 1991 Apr 16;30(15):3739–3748. doi: 10.1021/bi00229a022. [DOI] [PubMed] [Google Scholar]
- Strong R. K., Petsko G. A., Sharon J., Margolies M. N. Three-dimensional structure of murine anti-p-azophenylarsonate Fab 36-71. 2. Structural basis of hapten binding and idiotypy. Biochemistry. 1991 Apr 16;30(15):3749–3757. doi: 10.1021/bi00229a023. [DOI] [PubMed] [Google Scholar]
- Sutoh K. Identification of myosin-binding sites on the actin sequence. Biochemistry. 1982 Jul 20;21(15):3654–3661. doi: 10.1021/bi00258a020. [DOI] [PubMed] [Google Scholar]
- Talbot J. A., Hodges R. S. Synthetic studies on the inhibitory region of rabbit skeletal troponin I. Relationship of amino acid sequence to biological activity. J Biol Chem. 1981 Mar 25;256(6):2798–2802. [PubMed] [Google Scholar]
- Taub R., Gould R. J., Garsky V. M., Ciccarone T. M., Hoxie J., Friedman P. A., Shattil S. J. A monoclonal antibody against the platelet fibrinogen receptor contains a sequence that mimics a receptor recognition domain in fibrinogen. J Biol Chem. 1989 Jan 5;264(1):259–265. [PubMed] [Google Scholar]
- Tobacman L. S., Lee R. Isolation and functional comparison of bovine cardiac troponin T isoforms. J Biol Chem. 1987 Mar 25;262(9):4059–4064. [PubMed] [Google Scholar]
- Tong S. W., Elzinga M. Amino acid sequence of rabbit skeletal muscle myosin. 50-kDa fragment of the heavy chain. J Biol Chem. 1990 Mar 25;265(9):4893–4901. [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tulip W. R., Varghese J. N., Webster R. G., Laver W. G., Colman P. M. Crystal structures of two mutant neuraminidase-antibody complexes with amino acid substitutions in the interface. J Mol Biol. 1992 Sep 5;227(1):149–159. doi: 10.1016/0022-2836(92)90688-g. [DOI] [PubMed] [Google Scholar]
- Van Eyk J. E., Hodges R. S. A synthetic peptide of the N-terminus of actin interacts with myosin. Biochemistry. 1991 Dec 17;30(50):11676–11682. doi: 10.1021/bi00114a010. [DOI] [PubMed] [Google Scholar]
- Van Eyk J. E., Hodges R. S. The biological importance of each amino acid residue of the troponin I inhibitory sequence 104-115 in the interaction with troponin C and tropomyosin-actin. J Biol Chem. 1988 Feb 5;263(4):1726–1732. [PubMed] [Google Scholar]
- Walshaw J., Goodfellow J. M. Distribution of solvent molecules around apolar side-chains in protein crystals. J Mol Biol. 1993 May 20;231(2):392–414. doi: 10.1006/jmbi.1993.1290. [DOI] [PubMed] [Google Scholar]
- Warme P. K., Morgan R. S. A survey of atomic interactions in 21 proteins. J Mol Biol. 1978 Jan 25;118(3):273–287. doi: 10.1016/0022-2836(78)90228-0. [DOI] [PubMed] [Google Scholar]
- Weeds A. G., Taylor R. S. Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin. Nature. 1975 Sep 4;257(5521):54–56. doi: 10.1038/257054a0. [DOI] [PubMed] [Google Scholar]
- Williams W. V., Guy H. R., Rubin D. H., Robey F., Myers J. N., Kieber-Emmons T., Weiner D. B., Greene M. I. Sequences of the cell-attachment sites of reovirus type 3 and its anti-idiotypic/antireceptor antibody: modeling of their three-dimensional structures. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6488–6492. doi: 10.1073/pnas.85.17.6488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wishart D. S., Boyko R. F., Willard L., Richards F. M., Sykes B. D. SEQSEE: a comprehensive program suite for protein sequence analysis. Comput Appl Biosci. 1994 Apr;10(2):121–132. doi: 10.1093/bioinformatics/10.2.121. [DOI] [PubMed] [Google Scholar]
- Wong W. Y., Irvin R. T., Paranchych W., Hodges R. S. Antigen-antibody interactions: elucidation of the epitope and strain-specificity of a monoclonal antibody directed against the pilin protein adherence binding domain of Pseudomonas aeruginosa strain K. Protein Sci. 1992 Oct;1(10):1308–1318. doi: 10.1002/pro.5560011010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yagi K., Yazawa Y., Yasui T. Proteolytic separation of an enzymic active subfragment from the myosin-subfragment (S-1). Biochem Biophys Res Commun. 1967 Nov 17;29(3):331–336. doi: 10.1016/0006-291x(67)90458-5. [DOI] [PubMed] [Google Scholar]
- Zhou G. W., Guo J., Huang W., Fletterick R. J., Scanlan T. S. Crystal structure of a catalytic antibody with a serine protease active site. Science. 1994 Aug 19;265(5175):1059–1064. doi: 10.1126/science.8066444. [DOI] [PubMed] [Google Scholar]
- Zvelebil M. J., Sternberg M. J. Analysis and prediction of the location of catalytic residues in enzymes. Protein Eng. 1988 Jul;2(2):127–138. doi: 10.1093/protein/2.2.127. [DOI] [PubMed] [Google Scholar]
- van Kooyk Y., Weder P., Hogervorst F., Verhoeven A. J., van Seventer G., te Velde A. A., Borst J., Keizer G. D., Figdor C. G. Activation of LFA-1 through a Ca2(+)-dependent epitope stimulates lymphocyte adhesion. J Cell Biol. 1991 Jan;112(2):345–354. doi: 10.1083/jcb.112.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]