Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 May;4(5):849–854. doi: 10.1002/pro.5560040504

Structural motifs for pyridoxal-5'-phosphate binding in decarboxylases: an analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase.

C Momany 1, R Ghosh 1, M L Hackert 1
PMCID: PMC2143112  PMID: 7663340

Abstract

Two of the five domains in the structure of the ornithine decarboxylase (OrnDC) from Lactobacillus 30a share similar structural folds around the pyridoxal-5'-phosphate (PLP)-binding pocket with the aspartate aminotransferases (AspATs). Sequence comparisons focusing on conserved residues of the aligned structures reveal that this structural motif is also present in a number of other PLP-dependent enzymes including the histidine, dopa, tryptophan, glutamate, and glycine decarboxylases as well as tryptophanase and serine-hydroxymethyl transferase. However, this motif is not present in eukaryotic OrnDCs, the diaminopimelate decarboxylases, nor the Escherichia coli or oat arginine decarboxylases. The identification and comparison of residues involved in defining the different classes are discussed.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antson A. A., Demidkina T. V., Gollnick P., Dauter Z., von Tersch R. L., Long J., Berezhnoy S. N., Phillips R. S., Harutyunyan E. H., Wilson K. S. Three-dimensional structure of tyrosine phenol-lyase. Biochemistry. 1993 Apr 27;32(16):4195–4206. doi: 10.1021/bi00067a006. [DOI] [PubMed] [Google Scholar]
  2. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  3. Cabot E. L., Beckenbach A. T. Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Comput Appl Biosci. 1989 Jul;5(3):233–234. doi: 10.1093/bioinformatics/5.3.233. [DOI] [PubMed] [Google Scholar]
  4. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dunathan H. C., Voet J. G. Stereochemical evidence for the evolution of pyridoxal-phosphate enzymes of various function from a common ancestor. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3888–3891. doi: 10.1073/pnas.71.10.3888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ford G. C., Eichele G., Jansonius J. N. Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase. Proc Natl Acad Sci U S A. 1980 May;77(5):2559–2563. doi: 10.1073/pnas.77.5.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gani D. A structural and mechanistic comparison of pyridoxal 5'-phosphate dependent decarboxylase and transaminase enzymes. Philos Trans R Soc Lond B Biol Sci. 1991 May 29;332(1263):131–139. doi: 10.1098/rstb.1991.0041. [DOI] [PubMed] [Google Scholar]
  8. Hackert M. L., Carroll D. W., Davidson L., Kim S. O., Momany C., Vaaler G. L., Zhang L. Sequence of ornithine decarboxylase from Lactobacillus sp. strain 30a. J Bacteriol. 1994 Dec;176(23):7391–7394. doi: 10.1128/jb.176.23.7391-7394.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Higgins D. G., Sharp P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. doi: 10.1016/0378-1119(88)90330-7. [DOI] [PubMed] [Google Scholar]
  10. Jackson F. R. Prokaryotic and eukaryotic pyridoxal-dependent decarboxylases are homologous. J Mol Evol. 1990 Oct;31(4):325–329. doi: 10.1007/BF02101126. [DOI] [PubMed] [Google Scholar]
  11. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  12. KALYANKAR G. D., SNELL E. E. Pyridoxal-catalyzed decarboxylation of amino acids. Biochemistry. 1962 Jul;1:594–600. doi: 10.1021/bi00910a008. [DOI] [PubMed] [Google Scholar]
  13. Kamitori S., Hirotsu K., Higuchi T., Kondo K., Inoue K., Kuramitsu S., Kagamiyama H., Higuchi Y., Yasuoka N., Kusunoki M. Three-dimensional structure of aspartate aminotransferase from Escherichia coli at 2.8 A resolution. J Biochem. 1988 Sep;104(3):317–318. doi: 10.1093/oxfordjournals.jbchem.a122464. [DOI] [PubMed] [Google Scholar]
  14. McPhalen C. A., Vincent M. G., Jansonius J. N. X-ray structure refinement and comparison of three forms of mitochondrial aspartate aminotransferase. J Mol Biol. 1992 May 20;225(2):495–517. doi: 10.1016/0022-2836(92)90935-d. [DOI] [PubMed] [Google Scholar]
  15. Mehta P. K., Hale T. I., Christen P. Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur J Biochem. 1993 Jun 1;214(2):549–561. doi: 10.1111/j.1432-1033.1993.tb17953.x. [DOI] [PubMed] [Google Scholar]
  16. Mishin A. A., Sukhareva B. S. Glutamatdekarboksilaza iz Escherichia coli: kataliticheskaia rol' ostatka gistidina. Dokl Akad Nauk SSSR. 1986;290(5):1268–1271. [PubMed] [Google Scholar]
  17. Oikonomakos N. G., Johnson L. N., Acharya K. R., Stuart D. I., Barford D., Hajdu J., Varvill K. M., Melpidou A. E., Papageorgiou T., Graves D. J. Pyridoxal phosphate site in glycogen phosphorylase b: structure in native enzyme and in three derivatives with modified cofactors. Biochemistry. 1987 Dec 15;26(25):8381–8389. doi: 10.1021/bi00399a053. [DOI] [PubMed] [Google Scholar]
  18. Poulin R., Lu L., Ackermann B., Bey P., Pegg A. E. Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by alpha-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding sites. J Biol Chem. 1992 Jan 5;267(1):150–158. [PubMed] [Google Scholar]
  19. Rodrigez B. R., Carroll D. W., Mitchell D., Momany C., Hackert M. L. Crystallization of biosynthetic arginine decarboxylase from Escherichia coli. Acta Crystallogr D Biol Crystallogr. 1994 Mar 1;50(Pt 2):175–177. doi: 10.1107/S0907444993009989. [DOI] [PubMed] [Google Scholar]
  20. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  21. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  22. Sandmeier E., Hale T. I., Christen P. Multiple evolutionary origin of pyridoxal-5'-phosphate-dependent amino acid decarboxylases. Eur J Biochem. 1994 May 1;221(3):997–1002. doi: 10.1111/j.1432-1033.1994.tb18816.x. [DOI] [PubMed] [Google Scholar]
  23. Stoops J. K., Momany C., Ernst S. R., Oliver R. M., Schroeter J. P., Bretaudiere J. P., Hackert M. L. Comparisons of the low-resolution structures of ornithine decarboxylase by electron microscopy and X-ray crystallography: the utility of methylamine tungstate stain and Butvar support film in the study of macromolecules by transmission electron microscopy. J Electron Microsc Tech. 1991 Jun;18(2):157–166. doi: 10.1002/jemt.1060180210. [DOI] [PubMed] [Google Scholar]
  24. Toney M. D., Hohenester E., Cowan S. W., Jansonius J. N. Dialkylglycine decarboxylase structure: bifunctional active site and alkali metal sites. Science. 1993 Aug 6;261(5122):756–759. doi: 10.1126/science.8342040. [DOI] [PubMed] [Google Scholar]
  25. Toney M. D., Hohenester E., Keller J. W., Jansonius J. N. Structural and mechanistic analysis of two refined crystal structures of the pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase. J Mol Biol. 1995 Jan 13;245(2):151–179. doi: 10.1006/jmbi.1994.0014. [DOI] [PubMed] [Google Scholar]
  26. Vaaler G. L., Snell E. E. Pyridoxal 5'-phosphate dependent histidine decarboxylase: overproduction, purification, biosynthesis of soluble site-directed mutant proteins, and replacement of conserved residues. Biochemistry. 1989 Sep 5;28(18):7306–7313. doi: 10.1021/bi00444a024. [DOI] [PubMed] [Google Scholar]
  27. Wang B. C. Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol. 1985;115:90–112. doi: 10.1016/0076-6879(85)15009-3. [DOI] [PubMed] [Google Scholar]
  28. Yano T., Hinoue Y., Chen V. J., Metzler D. E., Miyahara I., Hirotsu K., Kagamiyama H. Role of an active site residue analyzed by combination of mutagenesis and coenzyme analog. J Mol Biol. 1993 Dec 20;234(4):1218–1229. doi: 10.1006/jmbi.1993.1672. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES