Abstract
Fragment D from human fibrinogen has been crystallized. The fragment, which is composed of three disulfide-linked chains (alpha' beta' gamma' = 88,000), was generated with either plasmin or mild trypsin digestion. The crystals diffracted out to 3.5 A; the space group is P2(1), unit cell dimensions a = 108 A, b = 48 A, c = 167 A, beta = 106 degrees. Fragment D was also co-crystallized with the ligand GPRP-amide, in which case the space group is consistent with P212121, unit cell dimensions a = 476 A, b = 82 A, c = 432 A.
Full Text
The Full Text of this article is available as a PDF (2.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAILEY K., BETTELHEIM F. R., LORAND L., MIDDLEBROOK W. R. Action of thrombin in the clotting of fibrinogen. Nature. 1951 Feb 10;167(4241):233–234. doi: 10.1038/167233a0. [DOI] [PubMed] [Google Scholar]
- Cohen C., Tooney N. M. Crystallisation of a modified fibrinogen. Nature. 1974 Oct 18;251(5476):659–660. doi: 10.1038/251659a0. [DOI] [PubMed] [Google Scholar]
- Cohen C., Weisel J. W., Phillips G. N., Jr, Stauffacher C. V., Fillers J. P., Daub E. The structure of fibrinogen and fibrin: I. Electron microscopy and X-ray crystallography of fibrinogen. Ann N Y Acad Sci. 1983 Jun 27;408:194–213. doi: 10.1111/j.1749-6632.1983.tb23245.x. [DOI] [PubMed] [Google Scholar]
- Doolittle R. F., Schubert D., Schwartz S. A. Amino acid sequence studies on artiodactyl fibrinopeptides. I. Dromedary camel, mule deer, and cape buffalo. Arch Biochem Biophys. 1967 Feb;118(2):456–467. doi: 10.1016/0003-9861(67)90374-8. [DOI] [PubMed] [Google Scholar]
- Gollwitzer R., Bode W. X-ray crystallographic and biochemical characterization of single crystals formed by proteolytically modified human fibrinogen. Eur J Biochem. 1986 Jan 15;154(2):437–443. doi: 10.1111/j.1432-1033.1986.tb09416.x. [DOI] [PubMed] [Google Scholar]
- Kuyas C., Haeberli A., Walder P., Straub P. W. Isolation of human fibrinogen and its derivatives by affinity chromatography on Gly-Pro-Arg-Pro-Lys-Fractogel. Thromb Haemost. 1990 Jun 28;63(3):439–444. [PubMed] [Google Scholar]
- Laudano A. P., Doolittle R. F. Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization. Structural requirements, number of binding sites, and species differences. Biochemistry. 1980 Mar 4;19(5):1013–1019. doi: 10.1021/bi00546a028. [DOI] [PubMed] [Google Scholar]
- Laudano A. P., Doolittle R. F. Synthetic peptide derivatives that bind to fibrinogen and prevent the polymerization of fibrin monomers. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3085–3089. doi: 10.1073/pnas.75.7.3085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
- NUSSENZWEIG V., SELIGMANN M., PELMONT J., GRABAR P. [The products of degradation of human fibrinogen by plasmin. I. Separation and physicochemical properties]. Ann Inst Pasteur (Paris) 1961 Mar;100:377–389. [PubMed] [Google Scholar]
- Rao S. P., Poojary M. D., Elliott B. W., Jr, Melanson L. A., Oriel B., Cohen C. Fibrinogen structure in projection at 18 A resolution. Electron density by co-ordinated cryo-electron microscopy and X-ray crystallography. J Mol Biol. 1991 Nov 5;222(1):89–98. doi: 10.1016/0022-2836(91)90739-s. [DOI] [PubMed] [Google Scholar]
- Tooney N. M., Cohen C. Microcrystals of a modified fibrinogen. Nature. 1972 May 5;237(5349):23–25. doi: 10.1038/237023a0. [DOI] [PubMed] [Google Scholar]
- WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
- Yamazumi K., Doolittle R. F. The synthetic peptide Gly-Pro-Arg-Pro-amide limits the plasmic digestion of fibrinogen in the same fashion as calcium ion. Protein Sci. 1992 Dec;1(12):1719–1720. doi: 10.1002/pro.5560011220. [DOI] [PMC free article] [PubMed] [Google Scholar]