Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 May;4(5):925–935. doi: 10.1002/pro.5560040512

On the lack of coordination between protein folding and flavin insertion in Escherichia coli for flavocytochrome b2 mutant forms Y254L and D282N.

M Gondry 1, K H Diêp Lê 1, F D Manson 1, S K Chapman 1, F S Mathews 1, G A Reid 1, F Lederer 1
PMCID: PMC2143118  PMID: 7663348

Abstract

Wild-type flavocytochrome b2 (L-lactate dehydrogenase) from Saccharomyces cerevisiae, as well as a number of its point mutants, can be expressed to a reasonable level as recombinant proteins in Escherichia coli (20-25 mg per liter culture) with a full complement of prosthetic groups. At the same expression level, active-site mutants Y254L and D282N, on the other hand, were obtained with an FMN/heme ratio significantly less than unity, which could not be raised by addition of free FMN. Evidence is provided that the flavin deficit is due to incomplete prosthetic group incorporation during biosynthesis. Flavin-free and holo-forms for both mutants could be separated on a Blue-Trisacryl M column. The far-UV CD spectra of the two forms of each mutant protein were very similar to one another and to that of the wild-type enzyme, suggesting the existence of only local conformational differences between the active holo-enzymes and the nonreconstitutable flavin-free forms. Selective proteolysis with chymotrypsin attacked the same bond for the two mutant holo-enzymes as in the wild-type one, in the protease-sensitive loop. In contrast, for the flavin-free forms of both mutants, cleavage occurred at more than a single bond. Identification of the cleaved bonds suggested that the structural differences between the mutant flavin-free and holo-forms are located mostly at the C-terminal end of the barrel, which carries the prosthetic group and the active site. Altogether, these findings suggest that the two mutations induce an alteration of the protein-folding process during biosynthesis in E. coli; as a result, the synchrony between folding and flavin insertion is lost. Finally, a preliminary kinetic characterization of the mutant holo-forms showed the Km value for lactate to be little affected; kcat values fell by a factor of about 70 for the D282N mutant and of more than 500 for the Y254L mutant, compared to the wild-type enzyme.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APPLEBY C. A., MORTON R. K. Crystalline cytochrome b2 and lactic dehydrogenase of yeast. Nature. 1954 Apr 24;173(4408):749–752. doi: 10.1038/173749a0. [DOI] [PubMed] [Google Scholar]
  2. Bandrin S. V., Beburov M. Iu, Rabinovich P. M., Stepanov A. I. Riboflavinovye auksotrofy Escherichia coli. Genetika. 1979 Nov;15(11):2063–2065. [PubMed] [Google Scholar]
  3. Baudras A. Groupes prosthétiques de la L-lacticodéshydrogénase de la levure. I. Mise en évidence du rôle de la flavine par l'étude des propriétés de l'spo-l-lacticodéshydrogénase. Bull Soc Chim Biol (Paris) 1965;47(6):1143–1175. [PubMed] [Google Scholar]
  4. Becker D. F., Fuchs J. A., Banfield D. K., Funk W. D., MacGillivray R. T., Stankovich M. T. Characterization of wild-type and an active-site mutant in Escherichia coli of short-chain acyl-CoA dehydrogenase from Megasphaera elsdenii. Biochemistry. 1993 Oct 12;32(40):10736–10742. doi: 10.1021/bi00091a026. [DOI] [PubMed] [Google Scholar]
  5. Black M. T., White S. A., Reid G. A., Chapman S. K. High-level expression of fully active yeast flavocytochrome b2 in Escherichia coli. Biochem J. 1989 Feb 15;258(1):255–259. doi: 10.1042/bj2580255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Borhani D. W., Harter T. M., Petrash J. M. The crystal structure of the aldose reductase.NADPH binary complex. J Biol Chem. 1992 Dec 5;267(34):24841–24847. doi: 10.2210/pdb1abn/pdb. [DOI] [PubMed] [Google Scholar]
  7. Brandsch R., Bichler V., Mauch L., Decker K. Cysteine to serine replacements in 6-hydroxy-D-nicotine oxidase. Consequences for enzyme activity, cofactor incorporation, and formation of high molecular weight protein complexes with molecular chaperones (GroEL). J Biol Chem. 1993 Jun 15;268(17):12724–12729. [PubMed] [Google Scholar]
  8. Brandsch R., Bichler V., Schmidt M., Buchner J. GroE dependence of refolding and holoenzyme formation of 6-hydroxy-D-nicotine oxidase. J Biol Chem. 1992 Oct 15;267(29):20844–20849. [PubMed] [Google Scholar]
  9. Bross P., Andresen B. S., Winter V., Kräutle F., Jensen T. G., Nandy A., Kølvraa S., Ghisla S., Bolund L., Gregersen N. Co-overexpression of bacterial GroESL chaperonins partly overcomes non-productive folding and tetramer assembly of E. coli-expressed human medium-chain acyl-CoA dehydrogenase (MCAD) carrying the prevalent disease-causing K304E mutation. Biochim Biophys Acta. 1993 Oct 20;1182(3):264–274. doi: 10.1016/0925-4439(93)90068-c. [DOI] [PubMed] [Google Scholar]
  10. Burley S. K., Petsko G. A. Weakly polar interactions in proteins. Adv Protein Chem. 1988;39:125–189. doi: 10.1016/s0065-3233(08)60376-9. [DOI] [PubMed] [Google Scholar]
  11. Carrillo N., Ceccarelli E. A., Krapp A. R., Boggio S., Ferreyra R. G., Viale A. M. Assembly of plant ferredoxin-NADP+ oxidoreductase in Escherichia coli requires GroE molecular chaperones. J Biol Chem. 1992 Aug 5;267(22):15537–15541. [PubMed] [Google Scholar]
  12. Douglas M., Finkelstein D., Butow R. A. Analysis of products of mitochondrial protein synthesis in yeast: genetic and biochemical aspects. Methods Enzymol. 1979;56:58–66. doi: 10.1016/0076-6879(79)56009-1. [DOI] [PubMed] [Google Scholar]
  13. Dubois J., Chapman S. K., Mathews F. S., Reid G. A., Lederer F. Substitution of Tyr254 with Phe at the active site of flavocytochrome b2: consequences on catalysis of lactate dehydrogenation. Biochemistry. 1990 Jul 10;29(27):6393–6400. doi: 10.1021/bi00479a008. [DOI] [PubMed] [Google Scholar]
  14. Genet R., Lederer F. The carbanion of nitroethane is an inhibitor of, and not a substrate for, flavocytochrome b2 [L-(+)-lactate dehydrogenase]. Biochem J. 1990 Feb 15;266(1):301–304. doi: 10.1042/bj2660301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gervais M., Labeyrie F., Risler Y., Vergnes O. A flavin-mononucleotide-binding site in Hansenula anomala nicked flavocytochrome b2, requiring the association of two domains. Eur J Biochem. 1980 Oct;111(1):17–31. doi: 10.1111/j.1432-1033.1980.tb06071.x. [DOI] [PubMed] [Google Scholar]
  16. Ghrir R., Lederer F. Study of a zone highly sensitive to proteases in flavocytochrome b2 from Saccharomyces cerevisiae. Eur J Biochem. 1981 Nov;120(2):279–287. doi: 10.1111/j.1432-1033.1981.tb05701.x. [DOI] [PubMed] [Google Scholar]
  17. Goloubinoff P., Christeller J. T., Gatenby A. A., Lorimer G. H. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfoleded state depends on two chaperonin proteins and Mg-ATP. Nature. 1989 Dec 21;342(6252):884–889. doi: 10.1038/342884a0. [DOI] [PubMed] [Google Scholar]
  18. Harbury H. A., Lanoue K. F., Loach P. A., Amick R. M. MOLECULAR INTERACTION OF ISOALLOXAZINE DERIVATIVES. II. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1708–1717. doi: 10.1073/pnas.45.12.1708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hendrick J. P., Hartl F. U. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem. 1993;62:349–384. doi: 10.1146/annurev.bi.62.070193.002025. [DOI] [PubMed] [Google Scholar]
  20. Iwatsubo M., Di Franco A. Groupes prosthétiques de la L-lacticodeshydrogénase de la levure. 3. Etude fluorométrique de la cinétique et de l'équilibre de combinaison du FMN à la partie protéique. Bull Soc Chim Biol (Paris) 1965;47(5):891–910. [PubMed] [Google Scholar]
  21. Iwatsubo M., Risler J. L. Etude par dichroïsme circulaire des interactions hème-flavine-protéine dans le cytochrome b2 (L-lactate oxydoréductase) de la levure. Eur J Biochem. 1969 Jun;9(2):280–285. doi: 10.1111/j.1432-1033.1969.tb00606.x. [DOI] [PubMed] [Google Scholar]
  22. Jacq C., Lederer F. Cytochrome b2 from bakers' yeast (L-lactate dehydrogenase). A double-headed enzyme. Eur J Biochem. 1974 Jan 16;41(2):311–320. doi: 10.1111/j.1432-1033.1974.tb03271.x. [DOI] [PubMed] [Google Scholar]
  23. Joseph D., Petsko G. A., Karplus M. Anatomy of a conformational change: hinged "lid" motion of the triosephosphate isomerase loop. Science. 1990 Sep 21;249(4975):1425–1428. doi: 10.1126/science.2402636. [DOI] [PubMed] [Google Scholar]
  24. Knight S., Andersson I., Brändén C. I. Crystallographic analysis of ribulose 1,5-bisphosphate carboxylase from spinach at 2.4 A resolution. Subunit interactions and active site. J Mol Biol. 1990 Sep 5;215(1):113–160. doi: 10.1016/S0022-2836(05)80100-7. [DOI] [PubMed] [Google Scholar]
  25. Koyama Y., Yamamoto-Otake H., Suzuki M., Nakano E. Cloning and expression of the sarcosine oxidase gene from Bacillus sp. NS-129 in Escherichia coli. Agric Biol Chem. 1991 May;55(5):1259–1263. [PubMed] [Google Scholar]
  26. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Labeyrie F., Baudras A., Lederer F. Flavocytochrome b 2 or L-lactate cytochrome c reductase from yeast. Methods Enzymol. 1978;53:238–256. doi: 10.1016/s0076-6879(78)53030-9. [DOI] [PubMed] [Google Scholar]
  28. Lederer F. Extreme pKa displacements at the active sites of FMN-dependent alpha-hydroxy acid-oxidizing enzymes. Protein Sci. 1992 Apr;1(4):540–548. doi: 10.1002/pro.5560010409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lederer F., Simon A. M. Subunits of bakers' yeast cytochrome b2 (L-lactate cytochrome c oxidoreductase). 1. Separation, molecular weight and amino acid analysis. Eur J Biochem. 1971 Jun 29;20(4):469–474. doi: 10.1111/j.1432-1033.1971.tb01415.x. [DOI] [PubMed] [Google Scholar]
  30. Lederer F. Sulfite binding to a flavodehydrogenase, cytochrome b2 from baker's yeast. Eur J Biochem. 1978 Aug 1;88(2):425–431. doi: 10.1111/j.1432-1033.1978.tb12465.x. [DOI] [PubMed] [Google Scholar]
  31. Lee S. C., Olins P. O. Effect of overproduction of heat shock chaperones GroESL and DnaK on human procollagenase production in Escherichia coli. J Biol Chem. 1992 Feb 15;267(5):2849–2852. [PubMed] [Google Scholar]
  32. Lindqvist Y., Brändén C. I., Mathews F. S., Lederer F. Spinach glycolate oxidase and yeast flavocytochrome b2 are structurally homologous and evolutionarily related enzymes with distinctly different function and flavin mononucleotide binding. J Biol Chem. 1991 Feb 15;266(5):3198–3207. [PubMed] [Google Scholar]
  33. Lundqvist T., Schneider G. Crystal structure of the complex of ribulose-1,5-bisphosphate carboxylase and a transition state analogue, 2-carboxy-D-arabinitol 1,5-bisphosphate. J Biol Chem. 1989 Apr 25;264(12):7078–7083. [PubMed] [Google Scholar]
  34. Massey V., Müller F., Feldberg R., Schuman M., Sullivan P. A., Howell L. G., Mayhew S. G., Matthews R. G., Foust G. P. The reactivity of flavoproteins with sulfite. Possible relevance to the problem of oxygen reactivity. J Biol Chem. 1969 Aug 10;244(15):3999–4006. [PubMed] [Google Scholar]
  35. Mevel-Ninio M., Pajot P., Labeyrie F. Reconstitution of cytochrome b2 following prosthetic groups dissociation by guanidine hydrochloride, Protoheme binding. Biochimie. 1971;53(1):35–41. doi: 10.1016/s0300-9084(71)80079-2. [DOI] [PubMed] [Google Scholar]
  36. Miles C. S., Rouvière-Fourmy N., Lederer F., Mathews F. S., Reid G. A., Black M. T., Chapman S. K. Tyr-143 facilitates interdomain electron transfer in flavocytochrome b2. Biochem J. 1992 Jul 1;285(Pt 1):187–192. doi: 10.1042/bj2850187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Mott J. E., Grant R. A., Ho Y. S., Platt T. Maximizing gene expression from plasmid vectors containing the lambda PL promoter: strategies for overproducing transcription termination factor rho. Proc Natl Acad Sci U S A. 1985 Jan;82(1):88–92. doi: 10.1073/pnas.82.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Müller F., Mayhew S. G., Massey V. On the effect of temperature on the absorption spectra of free and protein-bound flavines. Biochemistry. 1973 Nov 6;12(23):4654–4662. doi: 10.1021/bi00747a017. [DOI] [PubMed] [Google Scholar]
  39. Pajot P. Fluroescence of proteins in 6-M guanidine hydrochloride. A method for the quantitative determination of tryptophan. Eur J Biochem. 1976 Mar 16;63(1):263–269. doi: 10.1111/j.1432-1033.1976.tb10228.x. [DOI] [PubMed] [Google Scholar]
  40. Pompon D., Lederer F. Binding of Cibacron Blue F3GA to flavocytochrome b2 from baker's yeast. Eur J Biochem. 1978 Oct 16;90(3):563–569. doi: 10.1111/j.1432-1033.1978.tb12636.x. [DOI] [PubMed] [Google Scholar]
  41. Pompon D., Lederer F. Controlled proteolysis of flavocytochrome b2. Characterization of a 15000-dalton heme-binding core and comparison with detergent solubilized cytochrome b5. Eur J Biochem. 1976 Sep 15;68(2):415–423. doi: 10.1111/j.1432-1033.1976.tb10828.x. [DOI] [PubMed] [Google Scholar]
  42. Reid G. A., White S., Black M. T., Lederer F., Mathews F. S., Chapman S. K. Probing the active site of flavocytochrome b2 by site-directed mutagenesis. Eur J Biochem. 1988 Dec 15;178(2):329–333. doi: 10.1111/j.1432-1033.1988.tb14454.x. [DOI] [PubMed] [Google Scholar]
  43. Rouvière-Fourmy N., Capeillère-Blandin C., Lederer F. Role of tyrosine 143 in lactate dehydrogenation by flavocytochrome b2. Primary kinetic isotope effect studies with a phenylalanine mutant. Biochemistry. 1994 Jan 25;33(3):798–806. doi: 10.1021/bi00169a022. [DOI] [PubMed] [Google Scholar]
  44. Sandalova T., Lindqvist Y. Crystal structure of apo-glycolate oxidase. FEBS Lett. 1993 Aug 2;327(3):361–365. doi: 10.1016/0014-5793(93)81021-q. [DOI] [PubMed] [Google Scholar]
  45. Scrutton N. S., Packman L. C., Mathews F. S., Rohlfs R. J., Hille R. Assembly of redox centers in the trimethylamine dehydrogenase of bacterium W3A1. Properties of the wild-type enzyme and a C30A mutant expressed from a cloned gene in Escherichia coli. J Biol Chem. 1994 May 13;269(19):13942–13950. [PubMed] [Google Scholar]
  46. Shavlovskii G. M., Tesliar G. E., Strugovshchikova L. P. O reguliatsii flavinogeneza u riboflavinzavisimykh mutantov Escherichia coli. Mikrobiologiia. 1982 Nov-Dec;51(6):986–992. [PubMed] [Google Scholar]
  47. Sturtevant J. M., Tsong T. Y. Investigations of yeast L-lactate dehydrogenase (cytochrome b2). VI. Circular dichroism of the holoenzyme. J Biol Chem. 1969 Sep 25;244(18):4942–4950. [PubMed] [Google Scholar]
  48. Tegoni M., Cambillau C. Structural studies on recombinant and point mutants of flavocytochrome b2. Biochimie. 1994;76(6):501–514. doi: 10.1016/0300-9084(94)90174-0. [DOI] [PubMed] [Google Scholar]
  49. Tegoni M., Cambillau C. The 2.6-A refined structure of the Escherichia coli recombinant Saccharomyces cerevisiae flavocytochrome b2-sulfite complex. Protein Sci. 1994 Feb;3(2):303–313. doi: 10.1002/pro.5560030214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Xia Z. X., Mathews F. S. Molecular structure of flavocytochrome b2 at 2.4 A resolution. J Mol Biol. 1990 Apr 20;212(4):837–863. doi: 10.1016/0022-2836(90)90240-M. [DOI] [PubMed] [Google Scholar]
  51. Xia Z. X., Shamala N., Bethge P. H., Lim L. W., Bellamy H. D., Xuong N. H., Lederer F., Mathews F. S. Three-dimensional structure of flavocytochrome b2 from baker's yeast at 3.0-A resolution. Proc Natl Acad Sci U S A. 1987 May;84(9):2629–2633. doi: 10.1073/pnas.84.9.2629. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES