Abstract
The three-dimensional crystal structure of human pepsin and that of its complex with pepstatin have been solved by X-ray crystallographic methods. The native pepsin structure has been refined with data collected to 2.2 A resolution to an R-factor of 19.7%. The pepsin:pepstatin structure has been refined with data to 2.0 A resolution to an R-factor of 18.5%. The hydrogen bonding interactions and the conformation adopted by pepstatin are very similar to those found in complexes of pepstatin with other aspartic proteinases. The enzyme undergoes a conformational change upon inhibitor binding to enclose the inhibitor more tightly. The analysis of the binding sites indicates that they form an extended tube without distinct binding pockets. By comparing the residues on the binding surface with those of the other human aspartic proteinases, it has been possible to rationalize some of the experimental data concerning the different specificities. At the S1 site, valine at position 120 in renin instead of isoleucine, as in the other enzymes, allows for binding of larger hydrophobic residues. The possibility of multiple conformations for the P2 residue makes the analysis of the S2 site difficult. However, it is possible to see that the specific interactions that renin makes with histidine at P2 would not be possible in the case of the other enzymes. At the S3 site, the smaller volume that is accessible in pepsin compared to the other enzymes is consistent with its preference for smaller residues at the P3 position.
Full Text
The Full Text of this article is available as a PDF (2.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Azuma T., Pals G., Mohandas T. K., Couvreur J. M., Taggart R. T. Human gastric cathepsin E. Predicted sequence, localization to chromosome 1, and sequence homology with other aspartic proteinases. J Biol Chem. 1989 Oct 5;264(28):16748–16753. [PubMed] [Google Scholar]
- Bailey D., Cooper J. B., Veerapandian B., Blundell T. L., Atrash B., Jones D. M., Szelke M. X-ray-crystallographic studies of complexes of pepstatin A and a statine-containing human renin inhibitor with endothiapepsin. Biochem J. 1993 Jan 15;289(Pt 2):363–371. doi: 10.1042/bj2890363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldwin E. T., Bhat T. N., Gulnik S., Hosur M. V., Sowder R. C., 2nd, Cachau R. E., Collins J., Silva A. M., Erickson J. W. Crystal structures of native and inhibited forms of human cathepsin D: implications for lysosomal targeting and drug design. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6796–6800. doi: 10.1073/pnas.90.14.6796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baxter A., Campbell C. J., Grinham C. J., Keane R. M., Lawton B. C., Pendlebury J. E. Substrate and inhibitor studies with human gastric aspartic proteinases. Biochem J. 1990 May 1;267(3):665–669. doi: 10.1042/bj2670665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett K., Levine T., Ellis J. S., Peanasky R. J., Samloff I. M., Kay J., Chain B. M. Antigen processing for presentation by class II major histocompatibility complex requires cleavage by cathepsin E. Eur J Immunol. 1992 Jun;22(6):1519–1524. doi: 10.1002/eji.1830220626. [DOI] [PubMed] [Google Scholar]
- Bott R., Subramanian E., Davies D. R. Three-dimensional structure of the complex of the Rhizopus chinensis carboxyl proteinase and pepstatin at 2.5-A resolution. Biochemistry. 1982 Dec 21;21(26):6956–6962. doi: 10.1021/bi00269a052. [DOI] [PubMed] [Google Scholar]
- Cataldo A. M., Nixon R. A. Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain. Proc Natl Acad Sci U S A. 1990 May;87(10):3861–3865. doi: 10.1073/pnas.87.10.3861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cody R. J. The clinical potential of renin inhibitors and angiotensin antagonists. Drugs. 1994 Apr;47(4):586–598. doi: 10.2165/00003495-199447040-00003. [DOI] [PubMed] [Google Scholar]
- Epps D. E., Cheney J., Schostarez H., Sawyer T. K., Prairie M., Krueger W. C., Mandel F. Thermodynamics of the interaction of inhibitors with the binding site of recombinant human renin. J Med Chem. 1990 Aug;33(8):2080–2086. doi: 10.1021/jm00170a006. [DOI] [PubMed] [Google Scholar]
- Evers M. P., Zelle B., Bebelman J. P., van Beusechem V., Kraakman L., Hoffer M. J., Pronk J. C., Mager W. H., Planta R. J., Eriksson A. W. Nucleotide sequence comparison of five human pepsinogen A (PGA) genes: evolution of the PGA multigene family. Genomics. 1989 Apr;4(3):232–239. doi: 10.1016/0888-7543(89)90325-x. [DOI] [PubMed] [Google Scholar]
- Faust P. L., Kornfeld S., Chirgwin J. M. Cloning and sequence analysis of cDNA for human cathepsin D. Proc Natl Acad Sci U S A. 1985 Aug;82(15):4910–4914. doi: 10.1073/pnas.82.15.4910. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foltmann B. Gastric proteinases--structure, function, evolution and mechanism of action. Essays Biochem. 1981;17:52–84. [PubMed] [Google Scholar]
- Foundling S. I., Cooper J., Watson F. E., Cleasby A., Pearl L. H., Sibanda B. L., Hemmings A., Wood S. P., Blundell T. L., Valler M. J. High resolution X-ray analyses of renin inhibitor-aspartic proteinase complexes. 1987 May 28-Jun 3Nature. 327(6120):349–352. doi: 10.1038/327349a0. [DOI] [PubMed] [Google Scholar]
- Fruton J. S. The mechanism of the catalytic action of pepsin and related acid proteinases. Adv Enzymol Relat Areas Mol Biol. 1976;44:1–36. doi: 10.1002/9780470122891.ch1. [DOI] [PubMed] [Google Scholar]
- Hayano T., Sogawa K., Ichihara Y., Fujii-Kuriyama Y., Takahashi K. Primary structure of human pepsinogen C gene. J Biol Chem. 1988 Jan 25;263(3):1382–1385. [PubMed] [Google Scholar]
- Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
- Howard A. J., Nielsen C., Xuong N. H. Software for a diffractometer with multiwire area detector. Methods Enzymol. 1985;114:452–472. doi: 10.1016/0076-6879(85)14030-9. [DOI] [PubMed] [Google Scholar]
- Imai T., Miyazaki H., Hirose S., Hori H., Hayashi T., Kageyama R., Ohkubo H., Nakanishi S., Murakami K. Cloning and sequence analysis of cDNA for human renin precursor. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7405–7409. doi: 10.1073/pnas.80.24.7405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James M. N., Sielecki A. R. Structure and refinement of penicillopepsin at 1.8 A resolution. J Mol Biol. 1983 Jan 15;163(2):299–361. doi: 10.1016/0022-2836(83)90008-6. [DOI] [PubMed] [Google Scholar]
- Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
- Jupp R. A., Dunn B. M., Jacobs J. W., Vlasuk G., Arcuri K. E., Veber D. F., Perlow D. S., Payne L. S., Boger J., de Laszlo S. The selectivity of statine-based inhibitors against various human aspartic proteinases. Biochem J. 1990 Feb 1;265(3):871–878. doi: 10.1042/bj2650871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
- Kleywegt G. J., Jones T. A. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr D Biol Crystallogr. 1994 Mar 1;50(Pt 2):178–185. doi: 10.1107/S0907444993011333. [DOI] [PubMed] [Google Scholar]
- Lees W. E., Kalinka S., Meech J., Capper S. J., Cook N. D., Kay J. Generation of human endothelin by cathepsin E. FEBS Lett. 1990 Oct 29;273(1-2):99–102. doi: 10.1016/0014-5793(90)81060-2. [DOI] [PubMed] [Google Scholar]
- Morris A. L., MacArthur M. W., Hutchinson E. G., Thornton J. M. Stereochemical quality of protein structure coordinates. Proteins. 1992 Apr;12(4):345–364. doi: 10.1002/prot.340120407. [DOI] [PubMed] [Google Scholar]
- Morávek L., Kostka V. Complete amino acid sequence of hog pepsin. FEBS Lett. 1974 Jul 15;43(2):207–211. doi: 10.1016/0014-5793(74)81001-x. [DOI] [PubMed] [Google Scholar]
- Peek K., Roberts N. B., Taylor W. H. Improved separation of human pepsins from gastric juice by high-performance ion-exchange chromatography. J Chromatogr. 1989 Aug 4;476:291–297. doi: 10.1016/s0021-9673(01)93876-2. [DOI] [PubMed] [Google Scholar]
- Rochefort H. Biological and clinical significance of cathepsin D in breast cancer. Semin Cancer Biol. 1990 Apr;1(2):153–160. [PubMed] [Google Scholar]
- Sali A., Veerapandian B., Cooper J. B., Foundling S. I., Hoover D. J., Blundell T. L. High-resolution X-ray diffraction study of the complex between endothiapepsin and an oligopeptide inhibitor: the analysis of the inhibitor binding and description of the rigid body shift in the enzyme. EMBO J. 1989 Aug;8(8):2179–2188. doi: 10.1002/j.1460-2075.1989.tb08340.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sali A., Veerapandian B., Cooper J. B., Moss D. S., Hofmann T., Blundell T. L. Domain flexibility in aspartic proteinases. Proteins. 1992 Feb;12(2):158–170. doi: 10.1002/prot.340120209. [DOI] [PubMed] [Google Scholar]
- Samloff I. M. Slow moving protease and the seven pepsinogens. Electrophoretic demontration of the existence of eight proteolytic fractions in human gastric mucosa. Gastroenterology. 1969 Dec;57(6):659–669. [PubMed] [Google Scholar]
- Scarborough P. E., Guruprasad K., Topham C., Richo G. R., Conner G. E., Blundell T. L., Dunn B. M. Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modeling. Protein Sci. 1993 Feb;2(2):264–276. doi: 10.1002/pro.5560020215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
- Sielecki A. R., Fedorov A. A., Boodhoo A., Andreeva N. S., James M. N. Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8 A resolution. J Mol Biol. 1990 Jul 5;214(1):143–170. doi: 10.1016/0022-2836(90)90153-D. [DOI] [PubMed] [Google Scholar]
- Sogawa K., Fujii-Kuriyama Y., Mizukami Y., Ichihara Y., Takahashi K. Primary structure of human pepsinogen gene. J Biol Chem. 1983 Apr 25;258(8):5306–5311. [PubMed] [Google Scholar]
- Suguna K., Padlan E. A., Bott R., Boger J., Parris K. D., Davies D. R. Structures of complexes of rhizopuspepsin with pepstatin and other statine-containing inhibitors. Proteins. 1992 Jul;13(3):195–205. doi: 10.1002/prot.340130303. [DOI] [PubMed] [Google Scholar]
- Tang J., Sepulveda P., Marciniszyn J., Jr, Chen K. C., Huang W. Y., Tao N., Liu D., Lanier J. P. Amino-acid sequence of porcine pepsin. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3437–3439. doi: 10.1073/pnas.70.12.3437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tarasova N. I., Szecsi P. B., Foltmann B. An aspartic proteinase from human erythrocytes is immunochemically indistinguishable from a non-pepsin, electrophoretically slow moving proteinase from gastric mucosa. Biochim Biophys Acta. 1986 Jan 15;880(1):96–100. doi: 10.1016/0304-4165(86)90124-8. [DOI] [PubMed] [Google Scholar]
- Zelle B., Evers M. P., Groot P. C., Bebelman J. P., Mager W. H., Planta R. J., Pronk J. C., Meuwissen S. G., Hofker M. H., Eriksson A. W. Genomic structure and evolution of the human pepsinogen A multigene family. Hum Genet. 1988 Jan;78(1):79–82. doi: 10.1007/BF00291240. [DOI] [PubMed] [Google Scholar]