Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 May;4(5):936–944. doi: 10.1002/pro.5560040513

Investigation of a side-chain-side-chain hydrogen bond by mutagenesis, thermodynamics, and NMR spectroscopy.

P K Hammen 1, J M Scholtz 1, J W Anderson 1, E B Waygood 1, R E Klevit 1
PMCID: PMC2143120  PMID: 7663349

Abstract

Anomalous NMR behavior of the hydroxyl proton resonance for Ser 31 has been reported for histidine-containing protein (HPr) from two microorganisms: Escherichia coli and Staphylococcus aureus. The unusual slow exchange and chemical shift exhibited by the resonance led to the proposal that the hydroxyl group is involved in a strong hydrogen bond. To test this hypothesis and to characterize the importance of such an interaction, a mutant in which Ser 31 is replaced by an alanine was generated in HPr from Escherichia coli. The activity, stability, and structure of the mutant HPr were assessed using a reconstituted assay system, analysis of solvent denaturation curves, and NMR, respectively. Substitution of Ser 31 yields a fully functional protein that is only slightly less stable (delta delta G(folding) = 0.46 +/- 0.15 kcal mol-1) than the wild type. The NMR results confirm the identity of the hydrogen bond acceptor as Asp 69 and reveal that it exists as the gauche- conformer in wild-type HPr in solution but exhibits conformational averaging in the mutant protein. The side chain of Asp 69 interacts with two main-chain amide proteins in addition to its interaction with the side chain of Ser 31 in the wild-type protein. These results indicate that removal of the serine has led to the loss of all three hydrogen bond interactions involving Asp 69, suggesting a cooperative network of interactions. A complete analysis of the thermodynamics was performed in which differences in side-chain hydrophobicity and conformational entropy between the two proteins are accounted for.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. W., Bhanot P., Georges F., Klevit R. E., Waygood E. B. Involvement of the carboxy-terminal residue in the active site of the histidine-containing protein, HPr, of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli. Biochemistry. 1991 Oct 8;30(40):9601–9607. doi: 10.1021/bi00104a006. [DOI] [PubMed] [Google Scholar]
  2. Driscoll P. C., Gronenborn A. M., Wingfield P. T., Clore G. M. Determination of the secondary structure and molecular topology of interleukin-1 beta by use of two- and three-dimensional heteronuclear 15N-1H NMR spectroscopy. Biochemistry. 1990 May 15;29(19):4668–4682. doi: 10.1021/bi00471a023. [DOI] [PubMed] [Google Scholar]
  3. Driscoll P. C., Hill H. A., Redfield C. 1H-NMR sequential assignments and cation-binding studies of spinach plastocyanin. Eur J Biochem. 1987 Dec 30;170(1-2):279–292. doi: 10.1111/j.1432-1033.1987.tb13697.x. [DOI] [PubMed] [Google Scholar]
  4. Feng Y., Roder H., Englander S. W., Wand A. J., Di Stefano D. L. Proton resonance assignments of horse ferricytochrome c. Biochemistry. 1989 Jan 10;28(1):195–203. doi: 10.1021/bi00427a027. [DOI] [PubMed] [Google Scholar]
  5. Hammen P. K., Waygood E. B., Klevit R. E. Reexamination of the secondary and tertiary structure of histidine-containing protein from Escherichia coli by homonuclear and heteronuclear NMR spectroscopy. Biochemistry. 1991 Dec 24;30(51):11842–11850. doi: 10.1021/bi00115a014. [DOI] [PubMed] [Google Scholar]
  6. Herzberg O., Klevit R. Unraveling a bacterial hexose transport pathway. Curr Opin Struct Biol. 1994 Dec;4(6):814–822. doi: 10.1016/0959-440x(94)90262-3. [DOI] [PubMed] [Google Scholar]
  7. Herzberg O., Reddy P., Sutrina S., Saier M. H., Jr, Reizer J., Kapadia G. Structure of the histidine-containing phosphocarrier protein HPr from Bacillus subtilis at 2.0-A resolution. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2499–2503. doi: 10.1073/pnas.89.6.2499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jia Z., Quail J. W., Waygood E. B., Delbaere L. T. The 2.0-A resolution structure of Escherichia coli histidine-containing phosphocarrier protein HPr. A redetermination. J Biol Chem. 1993 Oct 25;268(30):22490–22501. doi: 10.2210/pdb1poh/pdb. [DOI] [PubMed] [Google Scholar]
  9. Jia Z., Vandonselaar M., Quail J. W., Delbaere L. T. Active-centre torsion-angle strain revealed in 1.6 A-resolution structure of histidine-containing phosphocarrier protein. Nature. 1993 Jan 7;361(6407):94–97. doi: 10.1038/361094a0. [DOI] [PubMed] [Google Scholar]
  10. Kalbitzer H. R., Hengstenberg W. The solution structure of the histidine-containing protein (HPr) from Staphylococcus aureus as determined by two-dimensional 1H-NMR spectroscopy. Eur J Biochem. 1993 Aug 15;216(1):205–214. doi: 10.1111/j.1432-1033.1993.tb18134.x. [DOI] [PubMed] [Google Scholar]
  11. Klevit R. E., Waygood E. B. Two-dimensional 1H NMR studies of histidine-containing protein from Escherichia coli. 3. Secondary and tertiary structure as determined by NMR. Biochemistry. 1986 Nov 18;25(23):7774–7781. doi: 10.1021/bi00371a073. [DOI] [PubMed] [Google Scholar]
  12. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lévy S., Zeng G. Q., Danchin A. Cyclic AMP synthesis in Escherichia coli strains bearing known deletions in the pts phosphotransferase operon. Gene. 1990 Jan 31;86(1):27–33. doi: 10.1016/0378-1119(90)90110-d. [DOI] [PubMed] [Google Scholar]
  14. Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
  15. McDonald I. K., Thornton J. M. Satisfying hydrogen bonding potential in proteins. J Mol Biol. 1994 May 20;238(5):777–793. doi: 10.1006/jmbi.1994.1334. [DOI] [PubMed] [Google Scholar]
  16. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  17. Pickett S. D., Sternberg M. J. Empirical scale of side-chain conformational entropy in protein folding. J Mol Biol. 1993 Jun 5;231(3):825–839. doi: 10.1006/jmbi.1993.1329. [DOI] [PubMed] [Google Scholar]
  18. Rajagopal P., Waygood E. B., Klevit R. E. Structural consequences of histidine phosphorylation: NMR characterization of the phosphohistidine form of histidine-containing protein from Bacillus subtilis and Escherichia coli. Biochemistry. 1994 Dec 27;33(51):15271–15282. doi: 10.1021/bi00255a008. [DOI] [PubMed] [Google Scholar]
  19. Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
  20. Sharma S., Georges F., Delbaere L. T., Lee J. S., Klevit R. E., Waygood E. B. Epitope mapping by mutagenesis distinguishes between the two tertiary structures of the histidine-containing protein HPr. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4877–4881. doi: 10.1073/pnas.88.11.4877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Spera S., Ikura M., Bax A. Measurement of the exchange rates of rapidly exchanging amide protons: application to the study of calmodulin and its complex with a myosin light chain kinase fragment. J Biomol NMR. 1991 Jul;1(2):155–165. doi: 10.1007/BF01877227. [DOI] [PubMed] [Google Scholar]
  22. Zoller M. J., Smith M. Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. DNA. 1984 Dec;3(6):479–488. doi: 10.1089/dna.1.1984.3.479. [DOI] [PubMed] [Google Scholar]
  23. van Nuland N. A., Grötzinger J., Dijkstra K., Scheek R. M., Robillard G. T. Determination of the three-dimensional solution structure of the histidine-containing phosphocarrier protein HPr from Escherichia coli using multidimensional NMR spectroscopy. Eur J Biochem. 1992 Dec 15;210(3):881–891. doi: 10.1111/j.1432-1033.1992.tb17492.x. [DOI] [PubMed] [Google Scholar]
  24. van Nuland N. A., Hangyi I. W., van Schaik R. C., Berendsen H. J., van Gunsteren W. F., Scheek R. M., Robillard G. T. The high-resolution structure of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from nuclear magnetic resonance nuclear Overhauser effect data. J Mol Biol. 1994 Apr 15;237(5):544–559. doi: 10.1006/jmbi.1994.1254. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES