Abstract
5-Aminolevulinate synthase is the first enzyme of the heme biosynthetic pathway in animals and some bacteria. Lysine-313 of the mouse erythroid aminolevulinate synthase was recently identified to be linked covalently to the pyridoxal 5'-phosphate cofactor (Ferreira GC, Neame PJ, Dailey HA, 1993, Protein Sci 2:1959-1965). Here we report on the effect of replacement of aminolevulinate synthase lysine-313 by alanine, histidine, and glycine, using site-directed mutagenesis. Mutant enzymes were purified to homogeneity, and the purification yields were similar to those of the wild-type enzyme. Although their absorption spectra indicate that the mutant enzymes bind pyridoxal 5'-phosphate, they bind noncovalently. However, addition of glycine to the mutant enzymes led to the formation of external aldimines. The formation of an external aldimine between the pyridoxal 5'-phosphate cofactor and the glycine substrate is the first step in the mechanism of the aminolevulinate synthase-catalyzed reaction. In contrast, lysine-313 is an essential catalytic residue, because the K313-directed mutant enzymes have no measurable activity. In summary, site-directed mutagenesis of the aminolevulinate synthase active-site lysine-313, to alanine (K313A), histidine (K313H), or glycine (K313G) yields enzymes that bind the pyridoxal 5'-phosphate cofactor and the glycine substrate to produce external aldimines, but which are inactive. This suggests that lysine-313 has a functional role in catalysis.
Full Text
The Full Text of this article is available as a PDF (2.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams E. Fluorometric determination of pyridoxal phosphate in enzymes. Methods Enzymol. 1979;62:407–410. doi: 10.1016/0076-6879(79)62249-8. [DOI] [PubMed] [Google Scholar]
- Bishop D. F., Henderson A. S., Astrin K. H. Human delta-aminolevulinate synthase: assignment of the housekeeping gene to 3p21 and the erythroid-specific gene to the X chromosome. Genomics. 1990 Jun;7(2):207–214. doi: 10.1016/0888-7543(90)90542-3. [DOI] [PubMed] [Google Scholar]
- CORDES E. H., JENCKS W. P. Semicarbazone formation from pyridoxal, pyridoxal phosphate, and their Schiff bases. Biochemistry. 1962 Sep;1:773–778. doi: 10.1021/bi00911a007. [DOI] [PubMed] [Google Scholar]
- Cox T. C., Bawden M. J., Abraham N. G., Bottomley S. S., May B. K., Baker E., Chen L. Z., Sutherland G. R. Erythroid 5-aminolevulinate synthase is located on the X chromosome. Am J Hum Genet. 1990 Jan;46(1):107–111. [PMC free article] [PubMed] [Google Scholar]
- Ferreira G. C., Dailey H. A. Expression of mammalian 5-aminolevulinate synthase in Escherichia coli. Overproduction, purification, and characterization. J Biol Chem. 1993 Jan 5;268(1):584–590. [PubMed] [Google Scholar]
- Ferreira G. C., Neame P. J., Dailey H. A. Heme biosynthesis in mammalian systems: evidence of a Schiff base linkage between the pyridoxal 5'-phosphate cofactor and a lysine residue in 5-aminolevulinate synthase. Protein Sci. 1993 Nov;2(11):1959–1965. doi: 10.1002/pro.5560021117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIKUCHI G., KUMAR A., TALMAGE P., SHEMIN D. The enzymatic synthesis of delta-aminolevulinic acid. J Biol Chem. 1958 Nov;233(5):1214–1219. [PubMed] [Google Scholar]
- Kirsch J. F., Eichele G., Ford G. C., Vincent M. G., Jansonius J. N., Gehring H., Christen P. Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure. J Mol Biol. 1984 Apr 15;174(3):497–525. doi: 10.1016/0022-2836(84)90333-4. [DOI] [PubMed] [Google Scholar]
- Kittler J. M., Viceps-Madore D., Cidlowski J. A., Meisler N. T., Thanassi J. W. Monoclonal antibodies to vitamin B6. Methods Enzymol. 1986;122:120–127. doi: 10.1016/0076-6879(86)22158-8. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lien L. F., Beattie D. S. Comparisons and modifications of the colorimetric assay for delta-aminolevulinic acid synthase. Enzyme. 1982;28(2-3):120–132. doi: 10.1159/000459096. [DOI] [PubMed] [Google Scholar]
- Lu Z., Nagata S., McPhie P., Miles E. W. Lysine 87 in the beta subunit of tryptophan synthase that forms an internal aldimine with pyridoxal phosphate serves critical roles in transimination, catalysis, and product release. J Biol Chem. 1993 Apr 25;268(12):8727–8734. [PubMed] [Google Scholar]
- Munakata H., Yamagami T., Nagai T., Yamamoto M., Hayashi N. Purification and structure of rat erythroid-specific delta-aminolevulinate synthase. J Biochem. 1993 Jul;114(1):103–111. doi: 10.1093/oxfordjournals.jbchem.a124123. [DOI] [PubMed] [Google Scholar]
- Nakakuki M., Yamauchi K., Hayashi N., Kikuchi G. Purification and some properties of delta-aminolevulinate synthase from the rat liver cytosol fraction and immunochemical identity of the cytosolic enzyme and the mitochondrial enzyme. J Biol Chem. 1980 Feb 25;255(4):1738–1745. [PubMed] [Google Scholar]
- Neidle E. L., Kaplan S. Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. J Bacteriol. 1993 Apr;175(8):2292–2303. doi: 10.1128/jb.175.8.2292-2303.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riddle R. D., Yamamoto M., Engel J. D. Expression of delta-aminolevulinate synthase in avian cells: separate genes encode erythroid-specific and nonspecific isozymes. Proc Natl Acad Sci U S A. 1989 Feb;86(3):792–796. doi: 10.1073/pnas.86.3.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith D. L., Almo S. C., Toney M. D., Ringe D. 2.8-A-resolution crystal structure of an active-site mutant of aspartate aminotransferase from Escherichia coli. Biochemistry. 1989 Oct 3;28(20):8161–8167. doi: 10.1021/bi00446a030. [DOI] [PubMed] [Google Scholar]
- Toney M. D., Kirsch J. F. Direct Brønsted analysis of the restoration of activity to a mutant enzyme by exogenous amines. Science. 1989 Mar 17;243(4897):1485–1488. doi: 10.1126/science.2538921. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warnick G. R., Burnham B. F. Regulation of prophyrin biosynthesis. Purification and characterization of -aminolevulinic acid synthase. J Biol Chem. 1971 Nov 25;246(22):6880–6885. [PubMed] [Google Scholar]
- Yoshimura T., Bhatia M. B., Manning J. M., Ringe D., Soda K. Partial reactions of bacterial D-amino acid transaminase with asparagine substituted for the lysine that binds coenzyme pyridoxal 5'-phosphate. Biochemistry. 1992 Dec 1;31(47):11748–11754. doi: 10.1021/bi00162a011. [DOI] [PubMed] [Google Scholar]