Abstract
P450 hemeproteins comprise a large gene superfamily that catalyzes monooxygenase reactions in the presence of a redox partner. Because the mammalian members are, without exception, membrane-bound proteins, they have resisted structure-function analysis by means of X-ray crystallographic methods. Among P450-catalyzed reactions, the aromatase reaction that catalyzes the conversion of C19 steroids to estrogens is one of the most complex and least understood. Thus, to better understand the reaction mechanism, we have constructed a three-dimensional model of P450arom not only to examine the active site and those residues potentially involved in catalysis, but to study other important structural features such as substrate recognition and redox-partner binding, which require examination of the entire molecule (excepting the putative membrane-spanning region). This model of P450arom was built based on a "core structure" identified from the structures of the soluble, bacterial P450s (P450cam, P450terp, and P450BM-P) rather than by molecular replacement, after which the less conserved elements and loops were added in a rational fashion. Minimization and dynamic simulations were used to optimize the model and the reasonableness of the structure was evaluated. From this model we have postulated a membrane-associated hydrophobic region of aliphatic and aromatic residues involved in substrate recognition, a redox-partner binding region that may be unique compared to other P450s, as well as residues involved in active site orientation of substrates and an inhibitor of P450arom, namely vorozole. We also have proposed a scheme for the reaction mechanism in which a "threonine switch" determines whether oxygen insertion into the substrate molecule involves an oxygen radical or a peroxide intermediate.
Full Text
The Full Text of this article is available as a PDF (10.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akhtar M., Calder M. R., Corina D. L., Wright J. N. Mechanistic studies on C-19 demethylation in oestrogen biosynthesis. Biochem J. 1982 Mar 1;201(3):569–580. doi: 10.1042/bj2010569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amarneh B., Corbin C. J., Peterson J. A., Simpson E. R., Graham-Lorence S. Functional domains of human aromatase cytochrome P450 characterized by linear alignment and site-directed mutagenesis. Mol Endocrinol. 1993 Dec;7(12):1617–1624. doi: 10.1210/mend.7.12.8145767. [DOI] [PubMed] [Google Scholar]
- Chen S., Zhou D. Functional domains of aromatase cytochrome P450 inferred from comparative analyses of amino acid sequences and substantiated by site-directed mutagenesis experiments. J Biol Chem. 1992 Nov 5;267(31):22587–22594. [PubMed] [Google Scholar]
- De Coster R., Van Ginckel R., Wouters W., Goeminne N., Vanherck W., Byloos M. Endocrine and antitumoral effects of R76713 in rats. J Enzyme Inhib. 1990;4(2):159–167. doi: 10.3109/14756369009040738. [DOI] [PubMed] [Google Scholar]
- Fischer R. T., Trzaskos J. M., Magolda R. L., Ko S. S., Brosz C. S., Larsen B. Lanosterol 14 alpha-methyl demethylase. Isolation and characterization of the third metabolically generated oxidative demethylation intermediate. J Biol Chem. 1991 Apr 5;266(10):6124–6132. [PubMed] [Google Scholar]
- French J. S., Guengerich F. P., Coon M. J. Interactions of cytochrome P-450, NADPH-cytochrome P-450 reductase, phospholipid, and substrate in the reconstituted liver microsomal enzyme system. J Biol Chem. 1980 May 10;255(9):4112–4119. [PubMed] [Google Scholar]
- Gerber N. C., Sligar S. G. A role for Asp-251 in cytochrome P-450cam oxygen activation. J Biol Chem. 1994 Feb 11;269(6):4260–4266. [PubMed] [Google Scholar]
- Graham-Lorence S., Khalil M. W., Lorence M. C., Mendelson C. R., Simpson E. R. Structure-function relationships of human aromatase cytochrome P-450 using molecular modeling and site-directed mutagenesis. J Biol Chem. 1991 Jun 25;266(18):11939–11946. [PubMed] [Google Scholar]
- Hasemann C. A., Kurumbail R. G., Boddupalli S. S., Peterson J. A., Deisenhofer J. Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure. 1995 Jan 15;3(1):41–62. doi: 10.1016/s0969-2126(01)00134-4. [DOI] [PubMed] [Google Scholar]
- Hutchinson E. G., Thornton J. M. A revised set of potentials for beta-turn formation in proteins. Protein Sci. 1994 Dec;3(12):2207–2216. doi: 10.1002/pro.5560031206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imai M., Shimada H., Watanabe Y., Matsushima-Hibiya Y., Makino R., Koga H., Horiuchi T., Ishimura Y. Uncoupling of the cytochrome P-450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine: possible role of the hydroxy amino acid in oxygen activation. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7823–7827. doi: 10.1073/pnas.86.20.7823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kellis J. T., Jr, Vickery L. E. Purification and characterization of human placental aromatase cytochrome P-450. J Biol Chem. 1987 Mar 25;262(9):4413–4420. [PubMed] [Google Scholar]
- Khalil M. W., Walton J. S. Identification and measurement of 4-oestren-3,17-dione (19-norandrostenedione) in porcine ovarian follicular fluid using high performance liquid chromatography and capillary gas chromatography-mass spectrometry. J Endocrinol. 1985 Dec;107(3):375–381. doi: 10.1677/joe.0.1070375. [DOI] [PubMed] [Google Scholar]
- Korzekwa K. R., Trager W. F., Mancewicz J., Osawa Y. Studies on the mechanism of aromatase and other cytochrome P450 mediated deformylation reactions. J Steroid Biochem Mol Biol. 1993 Mar;44(4-6):367–373. doi: 10.1016/0960-0760(93)90240-w. [DOI] [PubMed] [Google Scholar]
- Laughton C. A., Zvelebil M. J., Neidle S. A detailed molecular model for human aromatase. J Steroid Biochem Mol Biol. 1993 Mar;44(4-6):399–407. doi: 10.1016/0960-0760(93)90243-p. [DOI] [PubMed] [Google Scholar]
- Lindberg R. L., Negishi M. Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue. Nature. 1989 Jun 22;339(6226):632–634. doi: 10.1038/339632a0. [DOI] [PubMed] [Google Scholar]
- Lüthy R., Bowie J. U., Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992 Mar 5;356(6364):83–85. doi: 10.1038/356083a0. [DOI] [PubMed] [Google Scholar]
- MacArthur M. W., Thornton J. M. Influence of proline residues on protein conformation. J Mol Biol. 1991 Mar 20;218(2):397–412. doi: 10.1016/0022-2836(91)90721-h. [DOI] [PubMed] [Google Scholar]
- Mendelson C. R., Wright E. E., Evans C. T., Porter J. C., Simpson E. R. Preparation and characterization of polyclonal and monoclonal antibodies against human aromatase cytochrome P-450 (P-450AROM), and their use in its purification. Arch Biochem Biophys. 1985 Dec;243(2):480–491. doi: 10.1016/0003-9861(85)90525-9. [DOI] [PubMed] [Google Scholar]
- Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
- Nelson D. R., Kamataki T., Waxman D. J., Guengerich F. P., Estabrook R. W., Feyereisen R., Gonzalez F. J., Coon M. J., Gunsalus I. C., Gotoh O. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 1993 Jan-Feb;12(1):1–51. doi: 10.1089/dna.1993.12.1. [DOI] [PubMed] [Google Scholar]
- Raag R., Poulos T. L. Crystal structure of the carbon monoxide-substrate-cytochrome P-450CAM ternary complex. Biochemistry. 1989 Sep 19;28(19):7586–7592. doi: 10.1021/bi00445a013. [DOI] [PubMed] [Google Scholar]
- Ravichandran K. G., Boddupalli S. S., Hasermann C. A., Peterson J. A., Deisenhofer J. Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450's. Science. 1993 Aug 6;261(5122):731–736. doi: 10.1126/science.8342039. [DOI] [PubMed] [Google Scholar]
- Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
- Thompson E. A., Jr, Siiteri P. K. The involvement of human placental microsomal cytochrome P-450 in aromatization. J Biol Chem. 1974 Sep 10;249(17):5373–5378. [PubMed] [Google Scholar]
- Zhou D. J., Korzekwa K. R., Poulos T., Chen S. A. A site-directed mutagenesis study of human placental aromatase. J Biol Chem. 1992 Jan 15;267(2):762–768. [PubMed] [Google Scholar]
- Zhou D., Cam L. L., Laughton C. A., Korzekwa K. R., Chen S. Mutagenesis study at a postulated hydrophobic region near the active site of aromatase cytochrome P450. J Biol Chem. 1994 Jul 29;269(30):19501–19508. [PubMed] [Google Scholar]