Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Jun;4(6):1045–1055. doi: 10.1002/pro.5560040603

Characterization of the N-terminal half-saturated state of calbindin D9k: NMR studies of the N56A mutant.

B Wimberly 1, E Thulin 1, W J Chazin 1
PMCID: PMC2143144  PMID: 7549869

Abstract

Calbindin D9k is a small EF-hand protein that binds two calcium ions with positive cooperativity. The molecular basis of cooperativity for the binding pathway where the first ion binds in the N-terminal site (1) is investigated by NMR experiments on the half-saturated state of the N56A mutant, which exhibits sequential yet cooperative binding (Linse S, Chazin WJ, 1995, Protein Sci 4:1038-1044). Analysis of calcium-induced changes in chemical shifts, amide proton exchange rates, and NOEs indicates that ion binding to the N-terminal binding loop causes significant changes in conformation and/or dynamics throughout the protein. In particular, all three parameters indicate that the hydrophobic core undergoes a change in packing to a conformation very similar to the calcium-loaded state. These results are similar to those observed for the (Cd2+)1 state of the wild-type protein, a model for the complementary half-saturated state with an ion bound in the C-terminal site (II). Thus, with respect to cooperativity in either of the binding pathways, binding of the first ion drives the conformation and dynamics of the protein far toward the (Ca2+)2 state, thereby facilitating binding of the second ion. Comparison with the half-saturated state of the analogous E65Q mutant confirms that mutation of this critical bidentate calcium ligand at position 12 of the consensus EF-hand binding loop causes very significant structural perturbations. This result has important implications regarding numerous studies that have utilized mutation of this critical residue for site deactivation.

Full Text

The Full Text of this article is available as a PDF (5.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akke M., Forsén S., Chazin W. J. Molecular basis for co-operativity in Ca2+ binding to calbindin D9k. 1H nuclear magnetic resonance studies of (Cd2+)1-bovine calbindin D9k. J Mol Biol. 1991 Jul 5;220(1):173–189. doi: 10.1016/0022-2836(91)90389-n. [DOI] [PubMed] [Google Scholar]
  2. Akke M., Skelton N. J., Kördel J., Palmer A. G., 3rd, Chazin W. J. Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N NMR relaxation. Biochemistry. 1993 Sep 21;32(37):9832–9844. doi: 10.1021/bi00088a039. [DOI] [PubMed] [Google Scholar]
  3. Beckingham K. Use of site-directed mutations in the individual Ca2(+)-binding sites of calmodulin to examine Ca2(+)-induced conformational changes. J Biol Chem. 1991 Apr 5;266(10):6027–6030. [PubMed] [Google Scholar]
  4. Brodin P., Drakenberg T., Thulin E., Forsén S., Grundström T. Selective proton labelling of amino acids in deuterated bovine calbindin D9K. A way to simplify 1H-NMR spectra. Protein Eng. 1989 Jan;2(5):353–357. doi: 10.1093/protein/2.5.353. [DOI] [PubMed] [Google Scholar]
  5. Brodin P., Grundström T., Hofmann T., Drakenberg T., Thulin E., Forsén S. Expression of bovine intestinal calcium binding protein from a synthetic gene in Escherichia coli and characterization of the product. Biochemistry. 1986 Sep 23;25(19):5371–5377. doi: 10.1021/bi00367a004. [DOI] [PubMed] [Google Scholar]
  6. Carlström G., Chazin W. J. Two-dimensional 1H nuclear magnetic resonance studies of the half-saturated (Ca2+)1 state of calbindin D9k. Further implications for the molecular basis of cooperative Ca2+ binding. J Mol Biol. 1993 May 20;231(2):415–430. doi: 10.1006/jmbi.1993.1291. [DOI] [PubMed] [Google Scholar]
  7. Chazin W. J., Kördel J., Thulin E., Hofmann T., Drakenberg T., Forsén S. Identification of an isoaspartyl linkage formed upon deamidation of bovine calbindin D9k and structural characterization by 2D 1H NMR. Biochemistry. 1989 Oct 17;28(21):8646–8653. doi: 10.1021/bi00447a055. [DOI] [PubMed] [Google Scholar]
  8. Christakos S., Gabrielides C., Rhoten W. B. Vitamin D-dependent calcium binding proteins: chemistry, distribution, functional considerations, and molecular biology. Endocr Rev. 1989 Feb;10(1):3–26. doi: 10.1210/edrv-10-1-3. [DOI] [PubMed] [Google Scholar]
  9. Gao Z. H., Krebs J., VanBerkum M. F., Tang W. J., Maune J. F., Means A. R., Stull J. T., Beckingham K. Activation of four enzymes by two series of calmodulin mutants with point mutations in individual Ca2+ binding sites. J Biol Chem. 1993 Sep 25;268(27):20096–20104. [PubMed] [Google Scholar]
  10. Haiech J., Kilhoffer M. C., Lukas T. J., Craig T. A., Roberts D. M., Watterson D. M. Restoration of the calcium binding activity of mutant calmodulins toward normal by the presence of a calmodulin binding structure. J Biol Chem. 1991 Feb 25;266(6):3427–3431. [PubMed] [Google Scholar]
  11. Johansson C., Brodin P., Grundström T., Thulin E., Forsén S., Drakenberg T. Biophysical studies of engineered mutant proteins based on calbindin D9k modified in the pseudo EF-hand. Eur J Biochem. 1990 Jan 26;187(2):455–460. doi: 10.1111/j.1432-1033.1990.tb15325.x. [DOI] [PubMed] [Google Scholar]
  12. Kretsinger R. H., Nockolds C. E. Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem. 1973 May 10;248(9):3313–3326. [PubMed] [Google Scholar]
  13. Kördel J., Forsén S., Chazin W. J. 1H NMR sequential resonance assignments, secondary structure, and global fold in solution of the major (trans-Pro43) form of bovine calbindin D9k. Biochemistry. 1989 Aug 22;28(17):7065–7074. doi: 10.1021/bi00443a043. [DOI] [PubMed] [Google Scholar]
  14. Kördel J., Forsén S., Drakenberg T., Chazin W. J. The rate and structural consequences of proline cis-trans isomerization in calbindin D9k: NMR studies of the minor (cis-Pro43) isoform and the Pro43Gly mutant. Biochemistry. 1990 May 8;29(18):4400–4409. doi: 10.1021/bi00470a020. [DOI] [PubMed] [Google Scholar]
  15. Kördel J., Skelton N. J., Akke M., Chazin W. J. High-resolution structure of calcium-loaded calbindin D9k. J Mol Biol. 1993 Jun 5;231(3):711–734. doi: 10.1006/jmbi.1993.1322. [DOI] [PubMed] [Google Scholar]
  16. Linse S., Brodin P., Drakenberg T., Thulin E., Sellers P., Elmdén K., Grundström T., Forsén S. Structure-function relationships in EF-hand Ca2+-binding proteins. Protein engineering and biophysical studies of calbindin D9k. Biochemistry. 1987 Oct 20;26(21):6723–6735. doi: 10.1021/bi00395a023. [DOI] [PubMed] [Google Scholar]
  17. Linse S., Chazin W. J. Quantitative measurements of the cooperativity in an EF-hand protein with sequential calcium binding. Protein Sci. 1995 Jun;4(6):1038–1044. doi: 10.1002/pro.5560040602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maune J. F., Klee C. B., Beckingham K. Ca2+ binding and conformational change in two series of point mutations to the individual Ca(2+)-binding sites of calmodulin. J Biol Chem. 1992 Mar 15;267(8):5286–5295. [PubMed] [Google Scholar]
  19. Putkey J. A., Sweeney H. L., Campbell S. T. Site-directed mutation of the trigger calcium-binding sites in cardiac troponin C. J Biol Chem. 1989 Jul 25;264(21):12370–12378. [PubMed] [Google Scholar]
  20. Rasmussen H. The calcium messenger system (1). N Engl J Med. 1986 Apr 24;314(17):1094–1101. doi: 10.1056/NEJM198604243141707. [DOI] [PubMed] [Google Scholar]
  21. Rasmussen H. The calcium messenger system (2). N Engl J Med. 1986 May 1;314(18):1164–1170. doi: 10.1056/NEJM198605013141807. [DOI] [PubMed] [Google Scholar]
  22. Rasmussen H. The cycling of calcium as an intracellular messenger. Sci Am. 1989 Oct;261(4):66–73. doi: 10.1038/scientificamerican1089-66. [DOI] [PubMed] [Google Scholar]
  23. Skelton N. J., Kördel J., Akke M., Forsén S., Chazin W. J. Signal transduction versus buffering activity in Ca(2+)-binding proteins. Nat Struct Biol. 1994 Apr;1(4):239–245. doi: 10.1038/nsb0494-239. [DOI] [PubMed] [Google Scholar]
  24. Skelton N. J., Kördel J., Chazin W. J. Determination of the solution structure of Apo calbindin D9k by NMR spectroscopy. J Mol Biol. 1995 Jun 2;249(2):441–462. doi: 10.1006/jmbi.1995.0308. [DOI] [PubMed] [Google Scholar]
  25. Skelton N. J., Kördel J., Forsén S., Chazin W. J. Comparative structural analysis of the calcium free and bound states of the calcium regulatory protein calbindin D9K. J Mol Biol. 1990 Jun 20;213(4):593–598. doi: 10.1016/s0022-2836(05)80244-x. [DOI] [PubMed] [Google Scholar]
  26. Staun M. Calbindin-D of human small intestine and kidney. Purification, molecular properties and clinical significance. Dan Med Bull. 1991 Jun;38(3):271–282. [PubMed] [Google Scholar]
  27. Strynadka N. C., James M. N. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem. 1989;58:951–998. doi: 10.1146/annurev.bi.58.070189.004511. [DOI] [PubMed] [Google Scholar]
  28. Svensson L. A., Thulin E., Forsén S. Proline cis-trans isomers in calbindin D9k observed by X-ray crystallography. J Mol Biol. 1992 Feb 5;223(3):601–606. doi: 10.1016/0022-2836(92)90976-q. [DOI] [PubMed] [Google Scholar]
  29. Szebenyi D. M., Moffat K. The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium-binding proteins. J Biol Chem. 1986 Jul 5;261(19):8761–8777. [PubMed] [Google Scholar]
  30. Wagner G. Characterization of the distribution of internal motions in the basic pancreatic trypsin inhibitor using a large number of internal NMR probes. Q Rev Biophys. 1983 Feb;16(1):1–57. doi: 10.1017/s0033583500004911. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES