Abstract
A method is described to objectively identify hydrophobic clusters in proteins of known structure. Clusters are found by examining a protein for compact groupings of side chains. Compact clusters contain seven or more residues, have an average of 65% hydrophobic residues, and usually occur in protein interiors. Although smaller clusters contain only side-chain moieties, larger clusters enclose significant portions of the peptide backbone in regular secondary structure. These clusters agree well with hydrophobic regions assigned by more intuitive methods and many larger clusters correlate with protein domains. These results are in striking contrast with the clustering algorithm of J. Heringa and P. Argos (1991, J Mol Biol 220:151-171). That method finds that clusters located on a protein's surface are not especially hydrophobic and average only 3-4 residues in size. Hydrophobic clusters can be correlated with experimental evidence on early folding intermediates. This correlation is optimized when clusters with less than nine hydrophobic residues are removed from the data set. This suggests that hydrophobic clusters are important in the folding process only if they have enough hydrophobic residues.
Full Text
The Full Text of this article is available as a PDF (3.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acharya K. R., Stuart D. I., Walker N. P., Lewis M., Phillips D. C. Refined structure of baboon alpha-lactalbumin at 1.7 A resolution. Comparison with C-type lysozyme. J Mol Biol. 1989 Jul 5;208(1):99–127. doi: 10.1016/0022-2836(89)90091-0. [DOI] [PubMed] [Google Scholar]
- Alexandrescu A. T., Evans P. A., Pitkeathly M., Baum J., Dobson C. M. Structure and dynamics of the acid-denatured molten globule state of alpha-lactalbumin: a two-dimensional NMR study. Biochemistry. 1993 Feb 23;32(7):1707–1718. doi: 10.1021/bi00058a003. [DOI] [PubMed] [Google Scholar]
- Baudet S., Janin J. Crystal structure of a barnase-d(GpC) complex at 1.9 A resolution. J Mol Biol. 1991 May 5;219(1):123–132. doi: 10.1016/0022-2836(91)90862-z. [DOI] [PubMed] [Google Scholar]
- Bell J. A., Wilson K. P., Zhang X. J., Faber H. R., Nicholson H., Matthews B. W. Comparison of the crystal structure of bacteriophage T4 lysozyme at low, medium, and high ionic strengths. Proteins. 1991;10(1):10–21. doi: 10.1002/prot.340100103. [DOI] [PubMed] [Google Scholar]
- Briggs M. S., Roder H. Early hydrogen-bonding events in the folding reaction of ubiquitin. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2017–2021. doi: 10.1073/pnas.89.6.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buck M., Radford S. E., Dobson C. M. A partially folded state of hen egg white lysozyme in trifluoroethanol: structural characterization and implications for protein folding. Biochemistry. 1993 Jan 19;32(2):669–678. doi: 10.1021/bi00053a036. [DOI] [PubMed] [Google Scholar]
- Chyan C. L., Wormald C., Dobson C. M., Evans P. A., Baum J. Structure and stability of the molten globule state of guinea-pig alpha-lactalbumin: a hydrogen exchange study. Biochemistry. 1993 Jun 1;32(21):5681–5691. doi: 10.1021/bi00072a025. [DOI] [PubMed] [Google Scholar]
- Cocco M. J., Lecomte J. T. Characterization of hydrophobic cores in apomyoglobin: a proton NMR spectroscopy study. Biochemistry. 1990 Dec 18;29(50):11067–11072. doi: 10.1021/bi00502a008. [DOI] [PubMed] [Google Scholar]
- Diamond R. Real-space refinement of the structure of hen egg-white lysozyme. J Mol Biol. 1974 Jan 25;82(3):371–391. doi: 10.1016/0022-2836(74)90598-1. [DOI] [PubMed] [Google Scholar]
- Fersht A. R., Matouschek A., Serrano L. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J Mol Biol. 1992 Apr 5;224(3):771–782. doi: 10.1016/0022-2836(92)90561-w. [DOI] [PubMed] [Google Scholar]
- Fisher A., Taniuchi H. A study of core domains, and the core domain-domain interaction of cytochrome c fragment complex. Arch Biochem Biophys. 1992 Jul;296(1):1–16. doi: 10.1016/0003-9861(92)90538-8. [DOI] [PubMed] [Google Scholar]
- Gronenborn A. M., Clore G. M. Experimental support for the "hydrophobic zipper" hypothesis. Science. 1994 Jan 28;263(5146):536–536. doi: 10.1126/science.8290964. [DOI] [PubMed] [Google Scholar]
- Heringa J., Argos P. Side-chain clusters in protein structures and their role in protein folding. J Mol Biol. 1991 Jul 5;220(1):151–171. doi: 10.1016/0022-2836(91)90388-m. [DOI] [PubMed] [Google Scholar]
- Hughson F. M., Wright P. E., Baldwin R. L. Structural characterization of a partly folded apomyoglobin intermediate. Science. 1990 Sep 28;249(4976):1544–1548. doi: 10.1126/science.2218495. [DOI] [PubMed] [Google Scholar]
- Jeng M. F., Englander S. W., Elöve G. A., Wand A. J., Roder H. Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR. Biochemistry. 1990 Nov 20;29(46):10433–10437. doi: 10.1021/bi00498a001. [DOI] [PubMed] [Google Scholar]
- KAUZMANN W. Some factors in the interpretation of protein denaturation. Adv Protein Chem. 1959;14:1–63. doi: 10.1016/s0065-3233(08)60608-7. [DOI] [PubMed] [Google Scholar]
- Kiefhaber T., Grunert H. P., Hahn U., Schmid F. X. Replacement of a cis proline simplifies the mechanism of ribonuclease T1 folding. Biochemistry. 1990 Jul 10;29(27):6475–6480. doi: 10.1021/bi00479a020. [DOI] [PubMed] [Google Scholar]
- Kiefhaber T., Quaas R., Hahn U., Schmid F. X. Folding of ribonuclease T1. 1. Existence of multiple unfolded states created by proline isomerization. Biochemistry. 1990 Mar 27;29(12):3053–3061. doi: 10.1021/bi00464a023. [DOI] [PubMed] [Google Scholar]
- Koga K., Berliner L. J. Structural elucidation of a hydrophobic box in bovine alpha-lactalbumin by NMR: nuclear Overhauser effects. Biochemistry. 1985 Dec 3;24(25):7257–7262. doi: 10.1021/bi00346a035. [DOI] [PubMed] [Google Scholar]
- Lu J., Dahlquist F. W. Detection and characterization of an early folding intermediate of T4 lysozyme using pulsed hydrogen exchange and two-dimensional NMR. Biochemistry. 1992 May 26;31(20):4749–4756. doi: 10.1021/bi00135a002. [DOI] [PubMed] [Google Scholar]
- Martinez-Oyanedel J., Choe H. W., Heinemann U., Saenger W. Ribonuclease T1 with free recognition and catalytic site: crystal structure analysis at 1.5 A resolution. J Mol Biol. 1991 Nov 20;222(2):335–352. doi: 10.1016/0022-2836(91)90215-r. [DOI] [PubMed] [Google Scholar]
- Mathews F. S., Argos P., Levine M. The structure of cytochrome b 5 at 2.0 Angstrom resolution. Cold Spring Harb Symp Quant Biol. 1972;36:387–395. doi: 10.1101/sqb.1972.036.01.050. [DOI] [PubMed] [Google Scholar]
- Miranker A., Radford S. E., Karplus M., Dobson C. M. Demonstration by NMR of folding domains in lysozyme. Nature. 1991 Feb 14;349(6310):633–636. doi: 10.1038/349633a0. [DOI] [PubMed] [Google Scholar]
- Moore C. D., Lecomte J. T. Characterization of an independent structural unit in apocytochrome b5. Biochemistry. 1993 Jan 12;32(1):199–207. doi: 10.1021/bi00052a026. [DOI] [PubMed] [Google Scholar]
- Mullins L. S., Pace C. N., Raushel F. M. Investigation of ribonuclease T1 folding intermediates by hydrogen-deuterium amide exchange-two-dimensional NMR spectroscopy. Biochemistry. 1993 Jun 22;32(24):6152–6156. doi: 10.1021/bi00075a006. [DOI] [PubMed] [Google Scholar]
- Pan Y., Briggs M. S. Hydrogen exchange in native and alcohol forms of ubiquitin. Biochemistry. 1992 Nov 24;31(46):11405–11412. doi: 10.1021/bi00161a019. [DOI] [PubMed] [Google Scholar]
- Roder H., Elöve G. A., Englander S. W. Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature. 1988 Oct 20;335(6192):700–704. doi: 10.1038/335700a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Serrano L., Matouschek A., Fersht A. R. The folding of an enzyme. VI. The folding pathway of barnase: comparison with theoretical models. J Mol Biol. 1992 Apr 5;224(3):847–859. doi: 10.1016/0022-2836(92)90566-3. [DOI] [PubMed] [Google Scholar]
- Staley J. P., Kim P. S. Role of a subdomain in the folding of bovine pancreatic trypsin inhibitor. Nature. 1990 Apr 12;344(6267):685–688. doi: 10.1038/344685a0. [DOI] [PubMed] [Google Scholar]
- Stockman B. J., Euvrard A., Scahill T. A. Heteronuclear three-dimensional NMR spectroscopy of a partially denatured protein: the A-state of human ubiquitin. J Biomol NMR. 1993 May;3(3):285–296. doi: 10.1007/BF00212515. [DOI] [PubMed] [Google Scholar]
- Swindells M. B. A procedure for the automatic determination of hydrophobic cores in protein structures. Protein Sci. 1995 Jan;4(1):93–102. doi: 10.1002/pro.5560040112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takano T., Dickerson R. E. Redox conformation changes in refined tuna cytochrome c. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6371–6375. doi: 10.1073/pnas.77.11.6371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Udgaonkar J. B., Baldwin R. L. Early folding intermediate of ribonuclease A. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8197–8201. doi: 10.1073/pnas.87.21.8197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varley P., Gronenborn A. M., Christensen H., Wingfield P. T., Pain R. H., Clore G. M. Kinetics of folding of the all-beta sheet protein interleukin-1 beta. Science. 1993 May 21;260(5111):1110–1113. doi: 10.1126/science.8493553. [DOI] [PubMed] [Google Scholar]
- Veerapandian B., Gilliland G. L., Raag R., Svensson A. L., Masui Y., Hirai Y., Poulos T. L. Functional implications of interleukin-1 beta based on the three-dimensional structure. Proteins. 1992 Jan;12(1):10–23. doi: 10.1002/prot.340120103. [DOI] [PubMed] [Google Scholar]
- Vijay-Kumar S., Bugg C. E., Cook W. J. Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol. 1987 Apr 5;194(3):531–544. doi: 10.1016/0022-2836(87)90679-6. [DOI] [PubMed] [Google Scholar]
- Wlodawer A., Nachman J., Gilliland G. L., Gallagher W., Woodward C. Structure of form III crystals of bovine pancreatic trypsin inhibitor. J Mol Biol. 1987 Dec 5;198(3):469–480. doi: 10.1016/0022-2836(87)90294-4. [DOI] [PubMed] [Google Scholar]
- Wlodawer A., Svensson L. A., Sjölin L., Gilliland G. L. Structure of phosphate-free ribonuclease A refined at 1.26 A. Biochemistry. 1988 Apr 19;27(8):2705–2717. doi: 10.1021/bi00408a010. [DOI] [PubMed] [Google Scholar]
- Yanagawa H., Yoshida K., Torigoe C., Park J. S., Sato K., Shirai T., Go M. Protein anatomy: functional roles of barnase module. J Biol Chem. 1993 Mar 15;268(8):5861–5865. [PubMed] [Google Scholar]
- Zehfus M. H. Binary discontinuous compact protein domains. Protein Eng. 1994 Mar;7(3):335–340. doi: 10.1093/protein/7.3.335. [DOI] [PubMed] [Google Scholar]
- Zehfus M. H. Improved calculations of compactness and a reevaluation of continuous compact units. Proteins. 1993 Jul;16(3):293–300. doi: 10.1002/prot.340160307. [DOI] [PubMed] [Google Scholar]
- Zehfus M. H., Rose G. D. Compact units in proteins. Biochemistry. 1986 Sep 23;25(19):5759–5765. doi: 10.1021/bi00367a062. [DOI] [PubMed] [Google Scholar]