Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Jun;4(6):1203–1216. doi: 10.1002/pro.5560040618

De novo prediction of polypeptide conformations using dihedral probability grid Monte Carlo methodology.

J S Evans 1, A M Mathiowetz 1, S I Chan 1, W A Goddard 3rd 1
PMCID: PMC2143148  PMID: 7549884

Abstract

We tested the dihedral probability grid Monte Carlo (DPG-MC) methodology to determine optimal conformations of polypeptides by applying it to predict the low energy ensemble for two peptides whose solution NMR structures are known: integrin receptor peptide (YGRGDSP, Type II beta-turn) and S3 alpha-helical peptide (YMSEDEL KAAEAAFKRHGPT). DPG-MC involves importance sampling, local random stepping in the vicinity of a current local minima, and Metropolis sampling criteria for acceptance or rejection of new structures. Internal coordinate values are based on side-chain-specific dihedral angle probability distributions (from analysis of high-resolution protein crystal structures). Important features of DPG-MC are: (1) Each DPG-MC step selects the torsion angles (phi, psi, chi) from a discrete grid that are then applied directly to the structure. The torsion angle increments can be taken as S = 60, 30, 15, 10, or 5 degrees, depending on the application. (2) DPG-MC utilizes a temperature-dependent probability function (P) in conjunction with Metropolis sampling to accept or reject new structures. For each peptide, we found close agreement with the known structure for the low energy conformational ensemble located with DPG-MC. This suggests that DPG-MC will be useful for predicting conformations of other polypeptides.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abagyan R., Totrov M. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol. 1994 Jan 21;235(3):983–1002. doi: 10.1006/jmbi.1994.1052. [DOI] [PubMed] [Google Scholar]
  2. Arnold G. E., Ornstein R. L. An evaluation of implicit and explicit solvent model systems for the molecular dynamics simulation of bacteriophage T4 lysozyme. Proteins. 1994 Jan;18(1):19–33. doi: 10.1002/prot.340180105. [DOI] [PubMed] [Google Scholar]
  3. Dorofeyev V. E., Mazur A. K. Investigation of conformational equilibrium of polypeptides by internal coordinate stochastic dynamics. Met5-enkephalin. J Biomol Struct Dyn. 1993 Aug;11(1):143–167. doi: 10.1080/07391102.1993.10508714. [DOI] [PubMed] [Google Scholar]
  4. Dyson H. J., Rance M., Houghten R. A., Lerner R. A., Wright P. E. Folding of immunogenic peptide fragments of proteins in water solution. I. Sequence requirements for the formation of a reverse turn. J Mol Biol. 1988 May 5;201(1):161–200. doi: 10.1016/0022-2836(88)90446-9. [DOI] [PubMed] [Google Scholar]
  5. Fersht A. R., Sternberg M. J. Can a simple function for the dielectric response model electrostatic effects in globular proteins? Protein Eng. 1989 May;2(7):527–530. doi: 10.1093/protein/2.7.527. [DOI] [PubMed] [Google Scholar]
  6. Geourjon C., Deléage G. SOPM: a self-optimized method for protein secondary structure prediction. Protein Eng. 1994 Feb;7(2):157–164. doi: 10.1093/protein/7.2.157. [DOI] [PubMed] [Google Scholar]
  7. Gerstein M., Chothia C. Analysis of protein loop closure. Two types of hinges produce one motion in lactate dehydrogenase. J Mol Biol. 1991 Jul 5;220(1):133–149. doi: 10.1016/0022-2836(91)90387-l. [DOI] [PubMed] [Google Scholar]
  8. Johnson W. C., Jr, Pagano T. G., Basson C. T., Madri J. A., Gooley P., Armitage I. M. Biologically active Arg-Gly-Asp oligopeptides assume a type II beta-turn in solution. Biochemistry. 1993 Jan 12;32(1):268–273. doi: 10.1021/bi00052a034. [DOI] [PubMed] [Google Scholar]
  9. Kawai H., Kikuchi T., Okamoto Y. A prediction of tertiary structures of peptide by the Monte Carlo simulated annealing method. Protein Eng. 1989 Nov;3(2):85–94. doi: 10.1093/protein/3.2.85. [DOI] [PubMed] [Google Scholar]
  10. Kini R. M., Evans H. J. Molecular modeling of proteins: a strategy for energy minimization by molecular mechanics in the AMBER force field. J Biomol Struct Dyn. 1991 Dec;9(3):475–488. doi: 10.1080/07391102.1991.10507930. [DOI] [PubMed] [Google Scholar]
  11. Kocher J. P., Rooman M. J., Wodak S. J. Factors influencing the ability of knowledge-based potentials to identify native sequence-structure matches. J Mol Biol. 1994 Feb 4;235(5):1598–1613. doi: 10.1006/jmbi.1994.1109. [DOI] [PubMed] [Google Scholar]
  12. Lyu P. C., Wemmer D. E., Zhou H. X., Pinker R. J., Kallenbach N. R. Capping interactions in isolated alpha helices: position-dependent substitution effects and structure of a serine-capped peptide helix. Biochemistry. 1993 Jan 19;32(2):421–425. doi: 10.1021/bi00053a006. [DOI] [PubMed] [Google Scholar]
  13. Madej T., Mossing M. C. Hamiltonians for protein tertiary structure prediction based on three-dimensional environment principles. J Mol Biol. 1993 Oct 5;233(3):480–487. doi: 10.1006/jmbi.1993.1525. [DOI] [PubMed] [Google Scholar]
  14. Mehler E. L., Solmajer T. Electrostatic effects in proteins: comparison of dielectric and charge models. Protein Eng. 1991 Dec;4(8):903–910. doi: 10.1093/protein/4.8.903. [DOI] [PubMed] [Google Scholar]
  15. Purisima E. O., Scheraga H. A. Conversion from a virtual-bond chain to a complete polypeptide backbone chain. Biopolymers. 1984 Jul;23(7):1207–1224. doi: 10.1002/bip.360230706. [DOI] [PubMed] [Google Scholar]
  16. Rey A., Skolnick J. Computer modeling and folding of four-helix bundles. Proteins. 1993 May;16(1):8–28. doi: 10.1002/prot.340160103. [DOI] [PubMed] [Google Scholar]
  17. Richardson L., Zioncheck T. F., Amento E. P., Deguzman L., Lee W. P., Xu Y., Beck L. S. Characterization of radioiodinated recombinant human TGF-beta 1 binding to bone matrix within rabbit skull defects. J Bone Miner Res. 1993 Nov;8(11):1407–1414. doi: 10.1002/jbmr.5650081115. [DOI] [PubMed] [Google Scholar]
  18. Rooman M. J., Kocher J. P., Wodak S. J. Extracting information on folding from the amino acid sequence: accurate predictions for protein regions with preferred conformation in the absence of tertiary interactions. Biochemistry. 1992 Oct 27;31(42):10226–10238. doi: 10.1021/bi00157a009. [DOI] [PubMed] [Google Scholar]
  19. Schreiber H., Steinhauser O. Cutoff size does strongly influence molecular dynamics results on solvated polypeptides. Biochemistry. 1992 Jun 30;31(25):5856–5860. doi: 10.1021/bi00140a022. [DOI] [PubMed] [Google Scholar]
  20. Shin J. K., Jhon M. S. High directional Monte Carlo procedure coupled with the temperature heating and annealing as a method to obtain the global energy minimum structure of polypeptides and proteins. Biopolymers. 1991 Feb 5;31(2):177–185. doi: 10.1002/bip.360310206. [DOI] [PubMed] [Google Scholar]
  21. Smith P. E., Pettitt B. M. Amino acid side-chain populations in aqueous and saline solution: bis-penicillamine enkephalin. Biopolymers. 1992 Dec;32(12):1623–1629. doi: 10.1002/bip.360321205. [DOI] [PubMed] [Google Scholar]
  22. Srinivasan S., March C. J., Sudarsanam S. An automated method for modeling proteins on known templates using distance geometry. Protein Sci. 1993 Feb;2(2):277–289. doi: 10.1002/pro.5560020216. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES