Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Jun;4(6):1133–1144. doi: 10.1002/pro.5560040612

pH dependence of the stability of barstar to chemical and thermal denaturation.

R Khurana 1, A T Hate 1, U Nath 1, J B Udgaonkar 1
PMCID: PMC2143152  PMID: 7549878

Abstract

Equilibrium unfolding of barstar with guanidine hydrochloride (GdnHCl) and urea as denaturants as well as thermal unfolding have been carried out as a function of pH using fluorescence, far-UV and near-UV CD, and absorbance as probes. Both GdnHCl-induced and urea-induced denaturation studies at pH 7 show that barstar unfolds through a two-state F<->U mechanism and yields identical values for delta GU, the free energy difference between the fully folded (F) and unfolded (U) forms, of 5.0 +/- 0.5 kcal.mol-1 at 25 degrees C. Thermal denaturation of barstar also follows a two-state F<->U unfolding transition at pH 7, and the value of delta GU at 25 degrees C is similar to that obtained from chemical denaturation. The pH dependence of denaturation by GdnHCl is complex. The Cm value (midpoint of the unfolding transition) has been used as an index for stability in the pH range 2-10, because barstar does not unfold through a two-state transition on denaturation by GdnHCl at all pH values studied. Stability is maximum at pH 2-3, where barstar exists in a molten globule-like form that forms a large soluble oligomer. The stability decreases with an increase in pH to 5, the isoelectric pH of the protein. Above pH 5, the stability increases as the pH is raised to 7. Above pH 8, it again decreases as the pH is raised to 10. The decrease in stability from pH 7 to 5 in wild-type (wt) barstar, which is shown to be characterized by an apparent pKa of 6.2 +/- 0.2, is not observed in H17Q, a His 17-->Gln 17 mutant form of barstar. This decrease in stability has therefore been correlated with the protonation of His 17 in barstar. The decrease in stability beyond pH 8 in wt barstar, which is characterized by an apparent pKa of 9.2 +/- 0.2, is not detected in BSCCAA, the Cys 40 Cys 82-->Ala 40 Ala 82 double mutant form of barstar. Thus, this decrease in stability has been correlated with the deprotonation of at least one of the two cysteines present in wt barstar. The increase in stability from pH 5 to 3 is characterized by an apparent pKa of 4.6 +/- 0.2 for wt barstar and BSCCAA, which is similar to the apparent pKa that characterizes the structural transition leading to the formation of the A form. The use of Cm as an index of stability has been supported by thermal denaturation studies.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandrescu A. T., Evans P. A., Pitkeathly M., Baum J., Dobson C. M. Structure and dynamics of the acid-denatured molten globule state of alpha-lactalbumin: a two-dimensional NMR study. Biochemistry. 1993 Feb 23;32(7):1707–1718. doi: 10.1021/bi00058a003. [DOI] [PubMed] [Google Scholar]
  2. Anderson D. E., Becktel W. J., Dahlquist F. W. pH-induced denaturation of proteins: a single salt bridge contributes 3-5 kcal/mol to the free energy of folding of T4 lysozyme. Biochemistry. 1990 Mar 6;29(9):2403–2408. doi: 10.1021/bi00461a025. [DOI] [PubMed] [Google Scholar]
  3. Burger H. G., Edelhoch H., Condliffe P. G. The properties of bovine growth hormone. I. Behavior in acid solution. J Biol Chem. 1966 Jan 25;241(2):449–457. [PubMed] [Google Scholar]
  4. Bychkova V. E., Berni R., Rossi G. L., Kutyshenko V. P., Ptitsyn O. B. Retinol-binding protein is in the molten globule state at low pH. Biochemistry. 1992 Aug 25;31(33):7566–7571. doi: 10.1021/bi00148a018. [DOI] [PubMed] [Google Scholar]
  5. Cavard D., Sauve P., Heitz F., Pattus F., Martinez C., Dijkman R., Lazdunski C. Hydrodynamic properties of colicin A. Existence of a high-affinity lipid-binding site and oligomerization at acid pH. Eur J Biochem. 1988 Mar 1;172(2):507–512. doi: 10.1111/j.1432-1033.1988.tb13916.x. [DOI] [PubMed] [Google Scholar]
  6. Chen Y. H., Yang J. T., Martinez H. M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry. 1972 Oct 24;11(22):4120–4131. doi: 10.1021/bi00772a015. [DOI] [PubMed] [Google Scholar]
  7. Dolgikh D. A., Abaturov L. V., Brazhnikov, Lebedev Iu O., Chirgadze Iu N. Kislaia forma karboangidrazy: "rasplavlennaia globula" s vtorichnoi strukturoi. Dokl Akad Nauk SSSR. 1983;272(6):1481–1484. [PubMed] [Google Scholar]
  8. Dolgikh D. A., Gilmanshin R. I., Brazhnikov E. V., Bychkova V. E., Semisotnov G. V., Venyaminov SYu, Ptitsyn O. B. Alpha-Lactalbumin: compact state with fluctuating tertiary structure? FEBS Lett. 1981 Dec 28;136(2):311–315. doi: 10.1016/0014-5793(81)80642-4. [DOI] [PubMed] [Google Scholar]
  9. Eftink M. R., Helton K. J., Beavers A., Ramsay G. D. The unfolding of trp aporepressor as a function of pH: evidence for an unfolding intermediate. Biochemistry. 1994 Aug 30;33(34):10220–10228. doi: 10.1021/bi00200a002. [DOI] [PubMed] [Google Scholar]
  10. Fink A. L., Calciano L. J., Goto Y., Kurotsu T., Palleros D. R. Classification of acid denaturation of proteins: intermediates and unfolded states. Biochemistry. 1994 Oct 18;33(41):12504–12511. doi: 10.1021/bi00207a018. [DOI] [PubMed] [Google Scholar]
  11. Goto Y., Calciano L. J., Fink A. L. Acid-induced folding of proteins. Proc Natl Acad Sci U S A. 1990 Jan;87(2):573–577. doi: 10.1073/pnas.87.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goto Y., Fink A. L. Conformational states of beta-lactamase: molten-globule states at acidic and alkaline pH with high salt. Biochemistry. 1989 Feb 7;28(3):945–952. doi: 10.1021/bi00429a004. [DOI] [PubMed] [Google Scholar]
  13. Griko Y. V., Privalov P. L., Venyaminov S. Y., Kutyshenko V. P. Thermodynamic study of the apomyoglobin structure. J Mol Biol. 1988 Jul 5;202(1):127–138. doi: 10.1016/0022-2836(88)90525-6. [DOI] [PubMed] [Google Scholar]
  14. Guillet V., Lapthorn A., Hartley R. W., Mauguen Y. Recognition between a bacterial ribonuclease, barnase, and its natural inhibitor, barstar. Structure. 1993 Nov 15;1(3):165–176. doi: 10.1016/0969-2126(93)90018-c. [DOI] [PubMed] [Google Scholar]
  15. Hartley R. W. Barnase and barstar. Expression of its cloned inhibitor permits expression of a cloned ribonuclease. J Mol Biol. 1988 Aug 20;202(4):913–915. doi: 10.1016/0022-2836(88)90568-2. [DOI] [PubMed] [Google Scholar]
  16. Herold M., Kirschner K. Reversible dissociation and unfolding of aspartate aminotransferase from Escherichia coli: characterization of a monomeric intermediate. Biochemistry. 1990 Feb 20;29(7):1907–1913. doi: 10.1021/bi00459a035. [DOI] [PubMed] [Google Scholar]
  17. Khurana R., Udgaonkar J. B. Equilibrium unfolding studies of barstar: evidence for an alternative conformation which resembles a molten globule. Biochemistry. 1994 Jan 11;33(1):106–115. doi: 10.1021/bi00167a014. [DOI] [PubMed] [Google Scholar]
  18. Kuwajima K. Protein folding in vitro. Curr Opin Biotechnol. 1992 Oct;3(5):462–467. doi: 10.1016/0958-1669(92)90072-q. [DOI] [PubMed] [Google Scholar]
  19. Lubienski M. J., Bycroft M., Freund S. M., Fersht A. R. Three-dimensional solution structure and 13C assignments of barstar using nuclear magnetic resonance spectroscopy. Biochemistry. 1994 Aug 2;33(30):8866–8877. [PubMed] [Google Scholar]
  20. Nath U., Udgaonkar J. B. Perturbation of a tertiary hydrogen bond in barstar by mutagenesis of the sole His residue to Gln leads to accumulation of at least one equilibrium folding intermediate. Biochemistry. 1995 Feb 7;34(5):1702–1713. doi: 10.1021/bi00005a027. [DOI] [PubMed] [Google Scholar]
  21. Pace C. N., Laurents D. V. A new method for determining the heat capacity change for protein folding. Biochemistry. 1989 Mar 21;28(6):2520–2525. doi: 10.1021/bi00432a026. [DOI] [PubMed] [Google Scholar]
  22. Pace C. N., Laurents D. V., Erickson R. E. Urea denaturation of barnase: pH dependence and characterization of the unfolded state. Biochemistry. 1992 Mar 17;31(10):2728–2734. doi: 10.1021/bi00125a013. [DOI] [PubMed] [Google Scholar]
  23. Pace C. N., Laurents D. V., Thomson J. A. pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease T1. Biochemistry. 1990 Mar 13;29(10):2564–2572. doi: 10.1021/bi00462a019. [DOI] [PubMed] [Google Scholar]
  24. Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
  25. Redfield C., Smith R. A., Dobson C. M. Structural characterization of a highly-ordered 'molten globule' at low pH. Nat Struct Biol. 1994 Jan;1(1):23–29. doi: 10.1038/nsb0194-23. [DOI] [PubMed] [Google Scholar]
  26. Robbins F. M., Holmes L. G. Circular dichroism spectra of alpha-lactalbumin. Biochim Biophys Acta. 1970 Nov 17;221(2):234–240. doi: 10.1016/0005-2795(70)90263-1. [DOI] [PubMed] [Google Scholar]
  27. Sali D., Bycroft M., Fersht A. R. Stabilization of protein structure by interaction of alpha-helix dipole with a charged side chain. Nature. 1988 Oct 20;335(6192):740–743. doi: 10.1038/335740a0. [DOI] [PubMed] [Google Scholar]
  28. Schreiber G., Fersht A. R. Interaction of barnase with its polypeptide inhibitor barstar studied by protein engineering. Biochemistry. 1993 May 18;32(19):5145–5150. doi: 10.1021/bi00070a025. [DOI] [PubMed] [Google Scholar]
  29. Schreiber G., Fersht A. R. The refolding of cis- and trans-peptidylprolyl isomers of barstar. Biochemistry. 1993 Oct 19;32(41):11195–11203. doi: 10.1021/bi00092a032. [DOI] [PubMed] [Google Scholar]
  30. Shastry M. C., Agashe V. R., Udgaonkar J. B. Quantitative analysis of the kinetics of denaturation and renaturation of barstar in the folding transition zone. Protein Sci. 1994 Sep;3(9):1409–1417. doi: 10.1002/pro.5560030907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shastry M. C., Udgaonkar J. B. The folding mechanism of barstar: evidence for multiple pathways and multiple intermediates. J Mol Biol. 1995 Apr 14;247(5):1013–1027. doi: 10.1006/jmbi.1994.0196. [DOI] [PubMed] [Google Scholar]
  32. Tanford C. Protein denaturation. C. Theoretical models for the mechanism of denaturation. Adv Protein Chem. 1970;24:1–95. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES