Abstract
The helix/coil equilibrium of a peptide in solution can be modulated by a variety of side-chain interactions that are not incorporated into the standard statistical mechanical models for prediction of peptide helical content. In this report, we describe a recursive formulation of the Lifson-Roig model that facilitates incorporation of specific pairwise side-chain interactions as well as nonspecific individual side-chain capping interactions. Application of this extended model to a series of host/guest peptides indicates that the apparent delta G value for a pairwise apolar interaction is dependent upon the spacing and orientation but not the sequential location of the participating residues. The apparent delta G values for such interactions are about 40% greater than the corresponding apparent delta delta G values obtained from difference measurements.
Full Text
The Full Text of this article is available as a PDF (533.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Doig A. J., Chakrabartty A., Klingler T. M., Baldwin R. L. Determination of free energies of N-capping in alpha-helices by modification of the Lifson-Roig helix-coil therapy to include N- and C-capping. Biochemistry. 1994 Mar 22;33(11):3396–3403. doi: 10.1021/bi00177a033. [DOI] [PubMed] [Google Scholar]
- Dunbrack R. L., Jr, Karplus M. Backbone-dependent rotamer library for proteins. Application to side-chain prediction. J Mol Biol. 1993 Mar 20;230(2):543–574. doi: 10.1006/jmbi.1993.1170. [DOI] [PubMed] [Google Scholar]
- Padmanabhan S., Baldwin R. L. Helix-stabilizing interaction between tyrosine and leucine or valine when the spacing is i, i + 4. J Mol Biol. 1994 Sep 2;241(5):706–713. doi: 10.1006/jmbi.1994.1545. [DOI] [PubMed] [Google Scholar]