Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Nov;164(2):757–761. doi: 10.1128/jb.164.2.757-761.1985

Inhibition of growth of Rhizobium japonicum by cyclic GMP.

B L Jones, A K Agarwal, D L Keister
PMCID: PMC214316  PMID: 2997129

Abstract

Exogenous cyclic guanosine-3',5'-monophosphate (cGMP) inhibited the growth of Rhizobium japonicum at less than 100 microM. Other nucleotides, including cyclic AMP, cyclic IMP, and cyclic CMP, had no inhibitory effect even at higher concentrations nor was the inhibition by cGMP reversed by cyclic AMP. The inhibitory effect was independent of the carbon and nitrogen source(s) used. cGMP did not inhibit the growth of any other species of bacterium tested, including several fast-growing Rhizobium species. The kinetics of growth inhibition are multiphasic, with no apparent effect for several hours after addition, followed by a period of total inhibition. Subsequently, growth resumed at a slower rate. Resumption of growth was not due to destruction of the nucleotide. Studies of the intracellular cGMP concentration did not reveal significant changes in cells grown under aerobic or microaerobic conditions. No effect of cGMP on the derepression of respiratory nitrate reductase was observed.

Full text

PDF
757

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal A. K., Keister D. L. Physiology of Ex Planta Nitrogenase Activity in Rhizobium japonicum. Appl Environ Microbiol. 1983 May;45(5):1592–1601. doi: 10.1128/aem.45.5.1592-1601.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bernlohr R. W., Haddox M. K., Goldberg N. D. Cyclic guanosine 3':5'-monophosphate in Escherichia coli and Bacillus lichenformis. J Biol Chem. 1974 Jul 10;249(13):4329–4331. [PubMed] [Google Scholar]
  4. Botsford J. L. Cyclic nucleotides in procaryotes. Microbiol Rev. 1981 Dec;45(4):620–642. doi: 10.1128/mr.45.4.620-642.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Calcott P. H. Cyclic AMP and cyclic GMP control of synthesis of constitutive enzymes in Escherichia coli. J Gen Microbiol. 1982 Apr;128(4):705–712. doi: 10.1099/00221287-128-4-705. [DOI] [PubMed] [Google Scholar]
  6. Ching T. M., Bergersen F. J., Turner G. L. Energy status, growth and nitrogenase activity in continuous cultures of Rhizobium sp. strain CB756 supplied with NH+4 and various rates of aeration. Biochim Biophys Acta. 1981 Jun 12;636(1):82–90. doi: 10.1016/0005-2728(81)90078-5. [DOI] [PubMed] [Google Scholar]
  7. Daniel R. M., Gray J. Nitrate reductase from anaerobically grown Rhizobium japonicum. J Gen Microbiol. 1976 Oct;96(2):247–251. doi: 10.1099/00221287-96-2-247. [DOI] [PubMed] [Google Scholar]
  8. Fleischman D. Localization and assay of guanylate cyclase. Methods Enzymol. 1982;81:522–526. doi: 10.1016/s0076-6879(82)81072-0. [DOI] [PubMed] [Google Scholar]
  9. Goldberg N. D., Haddox M. K. Cyclic GMP metabolism and involvement in biological regulation. Annu Rev Biochem. 1977;46:823–896. doi: 10.1146/annurev.bi.46.070177.004135. [DOI] [PubMed] [Google Scholar]
  10. Keister D. L., Evans W. R. Oxygen requirement for acetylene reduction by pure cultures of rhizobia. J Bacteriol. 1976 Jul;127(1):149–153. doi: 10.1128/jb.127.1.149-153.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kennedy I. R., Rigaud J., Trinchant J. C. Nitrate reductase from bacteroides of Rhizobium japonicum: enzyme characteristics and possible interaction with nitrogen fixation. Biochim Biophys Acta. 1975 Jul 27;397(1):24–35. doi: 10.1016/0005-2744(75)90175-8. [DOI] [PubMed] [Google Scholar]
  12. Kessler B. Some Relationships Between the Production of Carbon Dioxide by Roots and Lime Tolerance of Fruit Trees and Grape Vine Hybrids. Plant Physiol. 1960 Jan;35(1):140–145. doi: 10.1104/pp.35.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lim S. T., Hennecke H., Scott D. B. Effect of cyclic guanosine 3',5'-monophosphate on nitrogen fixation in Rhizobium japonicum. J Bacteriol. 1979 Jul;139(1):256–263. doi: 10.1128/jb.139.1.256-263.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lim S. T., Shanmugam K. T. Regulation of hydrogen utilisation in Rhizobium japonicum by cyclic AMP. Biochim Biophys Acta. 1979 May 16;584(3):479–492. doi: 10.1016/0304-4165(79)90121-1. [DOI] [PubMed] [Google Scholar]
  16. Phillips A. T., Mulfinger L. M. Cyclic adenosine 3',5'-monophosphate levels in Pseudomonas putida and Pseudomonas aeruginosa during induction and carbon catabolite repression of histidase synthesis. J Bacteriol. 1981 Mar;145(3):1286–1292. doi: 10.1128/jb.145.3.1286-1292.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rangel-Aldao R., Schwartz D., Rubin C. S. Rapid assay for cyclic AMP and cyclic GMP phosphodiesterases. Anal Biochem. 1978 Jul 1;87(2):367–375. doi: 10.1016/0003-2697(78)90686-3. [DOI] [PubMed] [Google Scholar]
  18. Schwartzel E. H., Jr, Bachman S., Levine R. A. Cyclic nucleotide activity in gastrointestinal tissues and fluids. Anal Biochem. 1977 Apr;78(2):395–405. doi: 10.1016/0003-2697(77)90100-2. [DOI] [PubMed] [Google Scholar]
  19. Upchurch R. G., Elkan G. H. Comparison of colony morphology, salt tolerance, and effectiveness in Rhizobium japonicum. Can J Microbiol. 1977 Sep;23(9):1118–1122. doi: 10.1139/m77-167. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES