Abstract
Volume changes among the unfolded (U), native (N), and molten globule (MG) conformations of horse heart ferricytochrome c have been measured. U to N (pH 2 to pH 7) was determined in the absence of added salt to be -136 +/- 5 mL/mol protein. U to MG (pH 2, no added salt to pH 2, 0.5 M KCl) yielded + 100 +/- 6 mL/mol. MG to N was broken into two steps, N to NClx at pH 7 by addition of buffered KCl to buffered protein lacking added salt (NClx = N interacting with an unknown number, X, of chloride ions), and MG to NClx by jumping MG at pH 2 in 0.5 M KCl to pH7 at the same salt concentration. The delta V of N to NClx was -30.9 +/- 1.4 mL/mol protein, whereas MG to NClx entailed a delta V of -235 +/- 6 mL/mol. Within experimental error, the results add up to zero for a complete thermodynamic cycle. We believe this to be the first volumetric cycle to have been measured for the conformational transitions of a protein. The results are discussed in terms of hydration contributions from deprotonation of the protein, other hydration effects, and the formation and/or enlargement of packing defects in the protein's tertiary structure during the steps of folding.
Full Text
The Full Text of this article is available as a PDF (520.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babul J., Stellwagen E. Participation of the protein ligands in the folding of cytochrome c. Biochemistry. 1972 Mar 28;11(7):1195–1200. doi: 10.1021/bi00757a013. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Bychkova V. E., Pain R. H., Ptitsyn O. B. The 'molten globule' state is involved in the translocation of proteins across membranes? FEBS Lett. 1988 Oct 10;238(2):231–234. doi: 10.1016/0014-5793(88)80485-x. [DOI] [PubMed] [Google Scholar]
- Chothia C. Hydrophobic bonding and accessible surface area in proteins. Nature. 1974 Mar 22;248(446):338–339. doi: 10.1038/248338a0. [DOI] [PubMed] [Google Scholar]
- Christensen H., Pain R. H. Molten globule intermediates and protein folding. Eur Biophys J. 1991;19(5):221–229. doi: 10.1007/BF00183530. [DOI] [PubMed] [Google Scholar]
- Dolgikh D. A., Kolomiets A. P., Bolotina I. A., Ptitsyn O. B. 'Molten-globule' state accumulates in carbonic anhydrase folding. FEBS Lett. 1984 Jan 2;165(1):88–92. doi: 10.1016/0014-5793(84)80020-4. [DOI] [PubMed] [Google Scholar]
- Dyson H. J., Beattie J. K. Spin state and unfolding equilibria of ferricytochrome c in acidic solutions. J Biol Chem. 1982 Mar 10;257(5):2267–2273. [PubMed] [Google Scholar]
- Eisenberg D., Wilcox W., McLachlan A. D. Hydrophobicity and amphiphilicity in protein structure. J Cell Biochem. 1986;31(1):11–17. doi: 10.1002/jcb.240310103. [DOI] [PubMed] [Google Scholar]
- Goto Y., Hagihara Y., Hamada D., Hoshino M., Nishii I. Acid-induced unfolding and refolding transitions of cytochrome c: a three-state mechanism in H2O and D2O. Biochemistry. 1993 Nov 9;32(44):11878–11885. doi: 10.1021/bi00095a017. [DOI] [PubMed] [Google Scholar]
- Goto Y., Nishikiori S. Role of electrostatic repulsion in the acidic molten globule of cytochrome c. J Mol Biol. 1991 Dec 5;222(3):679–686. doi: 10.1016/0022-2836(91)90504-y. [DOI] [PubMed] [Google Scholar]
- Goto Y., Takahashi N., Fink A. L. Mechanism of acid-induced folding of proteins. Biochemistry. 1990 Apr 10;29(14):3480–3488. doi: 10.1021/bi00466a009. [DOI] [PubMed] [Google Scholar]
- Haynie D. T., Freire E. Structural energetics of the molten globule state. Proteins. 1993 Jun;16(2):115–140. doi: 10.1002/prot.340160202. [DOI] [PubMed] [Google Scholar]
- Jeng M. F., Englander S. W. Stable submolecular folding units in a non-compact form of cytochrome c. J Mol Biol. 1991 Oct 5;221(3):1045–1061. doi: 10.1016/0022-2836(91)80191-v. [DOI] [PubMed] [Google Scholar]
- Kahn P. C., Briehl R. W. The absence of volume change in the gelation of hemoglobin-S. J Biol Chem. 1982 Oct 25;257(20):12209–12213. [PubMed] [Google Scholar]
- Kasarda D. D. Dilution volume changes of some purine and pyrimidine compounds. Biochim Biophys Acta. 1970 Oct 15;217(2):535–538. doi: 10.1016/0005-2787(70)90552-6. [DOI] [PubMed] [Google Scholar]
- Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins. 1989;6(2):87–103. doi: 10.1002/prot.340060202. [DOI] [PubMed] [Google Scholar]
- Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
- Liu G. Y., Grygon C. A., Spiro T. G. Ionic strength dependence of cytochrome c structure and Trp-59 H/D exchange from ultraviolet resonance Raman spectroscopy. Biochemistry. 1989 Jun 13;28(12):5046–5050. doi: 10.1021/bi00438a022. [DOI] [PubMed] [Google Scholar]
- Myer Y. P., Saturno A. F. Horse heart ferricytochrome c: conformation and heme configuration of high ionic strength acidic forms. J Protein Chem. 1991 Oct;10(5):481–494. doi: 10.1007/BF01025476. [DOI] [PubMed] [Google Scholar]
- Ohgushi M., Wada A. 'Molten-globule state': a compact form of globular proteins with mobile side-chains. FEBS Lett. 1983 Nov 28;164(1):21–24. doi: 10.1016/0014-5793(83)80010-6. [DOI] [PubMed] [Google Scholar]
- Osheroff N., Brautigan D. L., Margoliash E. Mapping of anion binding sites on cytochrome c by differential chemical modification of lysine residues. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4439–4443. doi: 10.1073/pnas.77.8.4439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richards F. M. The interpretation of protein structures: total volume, group volume distributions and packing density. J Mol Biol. 1974 Jan 5;82(1):1–14. doi: 10.1016/0022-2836(74)90570-1. [DOI] [PubMed] [Google Scholar]
- Shaw R. W., Hartzell C. R. Hydrogen ion titration of horse heart ferricytochrome c. Biochemistry. 1976 May 4;15(9):1909–1914. doi: 10.1021/bi00654a018. [DOI] [PubMed] [Google Scholar]
- Stellwagen E., Babul J. Stabilization of the globular structure of ferricytochrome c by chloride in acidic solvents. Biochemistry. 1975 Nov 18;14(23):5135–5140. doi: 10.1021/bi00694a018. [DOI] [PubMed] [Google Scholar]
- Taborsky G., McCollum K. Phosphate binding by cytochrome c. Specific binding site involved in the formation and reactivity of a complex of ferricytochrome c, ferrous ion, and phosphate. J Biol Chem. 1979 Aug 10;254(15):7069–7075. [PubMed] [Google Scholar]
- Trewhella J., Carlson V. A., Curtis E. H., Heidorn D. B. Differences in the solution structures of oxidized and reduced cytochrome c measured by small-angle X-ray scattering. Biochemistry. 1988 Feb 23;27(4):1121–1125. doi: 10.1021/bi00404a007. [DOI] [PubMed] [Google Scholar]
- Visser A. J., Li T. M., Drickamer H. G., Weber G. Volume changes in the formation of internal complexes of flavinyltryptophan peptides. Biochemistry. 1977 Nov 1;16(22):4883–4886. doi: 10.1021/bi00641a021. [DOI] [PubMed] [Google Scholar]
- Weber G., Tanaka F., Okamoto B. Y., Drickamer H. G. The effect of pressure on the molecular complex of isoalloxazine and adenine. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1264–1266. doi: 10.1073/pnas.71.4.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ybe J. A., Kahn P. C. Slow-folding kinetics of ribonuclease-A by volume change and circular dichroism: evidence for two independent reactions. Protein Sci. 1994 Apr;3(4):638–649. doi: 10.1002/pro.5560030412. [DOI] [PMC free article] [PubMed] [Google Scholar]
