Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Jul;4(7):1426–1429. doi: 10.1002/pro.5560040717

Volume changes of the molten globule transitions of horse heart ferricytochrome c: a thermodynamic cycle.

K Foygel 1, S Spector 1, S Chatterjee 1, P C Kahn 1
PMCID: PMC2143161  PMID: 7670384

Abstract

Volume changes among the unfolded (U), native (N), and molten globule (MG) conformations of horse heart ferricytochrome c have been measured. U to N (pH 2 to pH 7) was determined in the absence of added salt to be -136 +/- 5 mL/mol protein. U to MG (pH 2, no added salt to pH 2, 0.5 M KCl) yielded + 100 +/- 6 mL/mol. MG to N was broken into two steps, N to NClx at pH 7 by addition of buffered KCl to buffered protein lacking added salt (NClx = N interacting with an unknown number, X, of chloride ions), and MG to NClx by jumping MG at pH 2 in 0.5 M KCl to pH7 at the same salt concentration. The delta V of N to NClx was -30.9 +/- 1.4 mL/mol protein, whereas MG to NClx entailed a delta V of -235 +/- 6 mL/mol. Within experimental error, the results add up to zero for a complete thermodynamic cycle. We believe this to be the first volumetric cycle to have been measured for the conformational transitions of a protein. The results are discussed in terms of hydration contributions from deprotonation of the protein, other hydration effects, and the formation and/or enlargement of packing defects in the protein's tertiary structure during the steps of folding.

Full Text

The Full Text of this article is available as a PDF (520.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babul J., Stellwagen E. Participation of the protein ligands in the folding of cytochrome c. Biochemistry. 1972 Mar 28;11(7):1195–1200. doi: 10.1021/bi00757a013. [DOI] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Bychkova V. E., Pain R. H., Ptitsyn O. B. The 'molten globule' state is involved in the translocation of proteins across membranes? FEBS Lett. 1988 Oct 10;238(2):231–234. doi: 10.1016/0014-5793(88)80485-x. [DOI] [PubMed] [Google Scholar]
  4. Chothia C. Hydrophobic bonding and accessible surface area in proteins. Nature. 1974 Mar 22;248(446):338–339. doi: 10.1038/248338a0. [DOI] [PubMed] [Google Scholar]
  5. Christensen H., Pain R. H. Molten globule intermediates and protein folding. Eur Biophys J. 1991;19(5):221–229. doi: 10.1007/BF00183530. [DOI] [PubMed] [Google Scholar]
  6. Dolgikh D. A., Kolomiets A. P., Bolotina I. A., Ptitsyn O. B. 'Molten-globule' state accumulates in carbonic anhydrase folding. FEBS Lett. 1984 Jan 2;165(1):88–92. doi: 10.1016/0014-5793(84)80020-4. [DOI] [PubMed] [Google Scholar]
  7. Dyson H. J., Beattie J. K. Spin state and unfolding equilibria of ferricytochrome c in acidic solutions. J Biol Chem. 1982 Mar 10;257(5):2267–2273. [PubMed] [Google Scholar]
  8. Eisenberg D., Wilcox W., McLachlan A. D. Hydrophobicity and amphiphilicity in protein structure. J Cell Biochem. 1986;31(1):11–17. doi: 10.1002/jcb.240310103. [DOI] [PubMed] [Google Scholar]
  9. Goto Y., Hagihara Y., Hamada D., Hoshino M., Nishii I. Acid-induced unfolding and refolding transitions of cytochrome c: a three-state mechanism in H2O and D2O. Biochemistry. 1993 Nov 9;32(44):11878–11885. doi: 10.1021/bi00095a017. [DOI] [PubMed] [Google Scholar]
  10. Goto Y., Nishikiori S. Role of electrostatic repulsion in the acidic molten globule of cytochrome c. J Mol Biol. 1991 Dec 5;222(3):679–686. doi: 10.1016/0022-2836(91)90504-y. [DOI] [PubMed] [Google Scholar]
  11. Goto Y., Takahashi N., Fink A. L. Mechanism of acid-induced folding of proteins. Biochemistry. 1990 Apr 10;29(14):3480–3488. doi: 10.1021/bi00466a009. [DOI] [PubMed] [Google Scholar]
  12. Haynie D. T., Freire E. Structural energetics of the molten globule state. Proteins. 1993 Jun;16(2):115–140. doi: 10.1002/prot.340160202. [DOI] [PubMed] [Google Scholar]
  13. Jeng M. F., Englander S. W. Stable submolecular folding units in a non-compact form of cytochrome c. J Mol Biol. 1991 Oct 5;221(3):1045–1061. doi: 10.1016/0022-2836(91)80191-v. [DOI] [PubMed] [Google Scholar]
  14. Kahn P. C., Briehl R. W. The absence of volume change in the gelation of hemoglobin-S. J Biol Chem. 1982 Oct 25;257(20):12209–12213. [PubMed] [Google Scholar]
  15. Kasarda D. D. Dilution volume changes of some purine and pyrimidine compounds. Biochim Biophys Acta. 1970 Oct 15;217(2):535–538. doi: 10.1016/0005-2787(70)90552-6. [DOI] [PubMed] [Google Scholar]
  16. Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins. 1989;6(2):87–103. doi: 10.1002/prot.340060202. [DOI] [PubMed] [Google Scholar]
  17. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  18. Liu G. Y., Grygon C. A., Spiro T. G. Ionic strength dependence of cytochrome c structure and Trp-59 H/D exchange from ultraviolet resonance Raman spectroscopy. Biochemistry. 1989 Jun 13;28(12):5046–5050. doi: 10.1021/bi00438a022. [DOI] [PubMed] [Google Scholar]
  19. Myer Y. P., Saturno A. F. Horse heart ferricytochrome c: conformation and heme configuration of high ionic strength acidic forms. J Protein Chem. 1991 Oct;10(5):481–494. doi: 10.1007/BF01025476. [DOI] [PubMed] [Google Scholar]
  20. Ohgushi M., Wada A. 'Molten-globule state': a compact form of globular proteins with mobile side-chains. FEBS Lett. 1983 Nov 28;164(1):21–24. doi: 10.1016/0014-5793(83)80010-6. [DOI] [PubMed] [Google Scholar]
  21. Osheroff N., Brautigan D. L., Margoliash E. Mapping of anion binding sites on cytochrome c by differential chemical modification of lysine residues. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4439–4443. doi: 10.1073/pnas.77.8.4439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Richards F. M. The interpretation of protein structures: total volume, group volume distributions and packing density. J Mol Biol. 1974 Jan 5;82(1):1–14. doi: 10.1016/0022-2836(74)90570-1. [DOI] [PubMed] [Google Scholar]
  23. Shaw R. W., Hartzell C. R. Hydrogen ion titration of horse heart ferricytochrome c. Biochemistry. 1976 May 4;15(9):1909–1914. doi: 10.1021/bi00654a018. [DOI] [PubMed] [Google Scholar]
  24. Stellwagen E., Babul J. Stabilization of the globular structure of ferricytochrome c by chloride in acidic solvents. Biochemistry. 1975 Nov 18;14(23):5135–5140. doi: 10.1021/bi00694a018. [DOI] [PubMed] [Google Scholar]
  25. Taborsky G., McCollum K. Phosphate binding by cytochrome c. Specific binding site involved in the formation and reactivity of a complex of ferricytochrome c, ferrous ion, and phosphate. J Biol Chem. 1979 Aug 10;254(15):7069–7075. [PubMed] [Google Scholar]
  26. Trewhella J., Carlson V. A., Curtis E. H., Heidorn D. B. Differences in the solution structures of oxidized and reduced cytochrome c measured by small-angle X-ray scattering. Biochemistry. 1988 Feb 23;27(4):1121–1125. doi: 10.1021/bi00404a007. [DOI] [PubMed] [Google Scholar]
  27. Visser A. J., Li T. M., Drickamer H. G., Weber G. Volume changes in the formation of internal complexes of flavinyltryptophan peptides. Biochemistry. 1977 Nov 1;16(22):4883–4886. doi: 10.1021/bi00641a021. [DOI] [PubMed] [Google Scholar]
  28. Weber G., Tanaka F., Okamoto B. Y., Drickamer H. G. The effect of pressure on the molecular complex of isoalloxazine and adenine. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1264–1266. doi: 10.1073/pnas.71.4.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ybe J. A., Kahn P. C. Slow-folding kinetics of ribonuclease-A by volume change and circular dichroism: evidence for two independent reactions. Protein Sci. 1994 Apr;3(4):638–649. doi: 10.1002/pro.5560030412. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES