Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Jul;4(7):1421–1425. doi: 10.1002/pro.5560040716

The SEA module: a new extracellular domain associated with O-glycosylation.

P Bork 1, L Patthy 1
PMCID: PMC2143162  PMID: 7670383

Abstract

Using a variety of homology search methods and multiple alignments, a new extracellular module was identified in (1) agrin, (2) enterokinase, (3) a 63-kDa sea urchin sperm protein, (4) perlecan, (5) the breast cancer marker MUCI (episialin), (6) the cell surface antigen 114/A10, and (7/8) two functionally uncharacterized, probably extracellular, Caenorhabditis elegans proteins. Despite the functional diversity of these adhesive proteins, a common denominator seems to be their existence in heavily glycosylated environments. In addition, the better characterized proteins mentioned above contain all O-glycosidic-linked carbohydrates such as heparan sulfate that contribute considerably to their molecular masses. The common module might regulate or assist binding to neighboring carbohydrate moieties.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Aviezer D., Hecht D., Safran M., Eisinger M., David G., Yayon A. Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell. 1994 Dec 16;79(6):1005–1013. doi: 10.1016/0092-8674(94)90031-0. [DOI] [PubMed] [Google Scholar]
  3. Baron M., Norman D. G., Campbell I. D. Protein modules. Trends Biochem Sci. 1991 Jan;16(1):13–17. doi: 10.1016/0968-0004(91)90009-k. [DOI] [PubMed] [Google Scholar]
  4. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  5. Bork P. Shuffled domains in extracellular proteins. FEBS Lett. 1991 Jul 29;286(1-2):47–54. doi: 10.1016/0014-5793(91)80937-x. [DOI] [PubMed] [Google Scholar]
  6. Cohen I. R., Grässel S., Murdoch A. D., Iozzo R. V. Structural characterization of the complete human perlecan gene and its promoter. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10404–10408. doi: 10.1073/pnas.90.21.10404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Derrick J. P., Wigley D. B. The third IgG-binding domain from streptococcal protein G. An analysis by X-ray crystallography of the structure alone and in a complex with Fab. J Mol Biol. 1994 Nov 11;243(5):906–918. doi: 10.1006/jmbi.1994.1691. [DOI] [PubMed] [Google Scholar]
  8. Dougherty G. J., Kay R. J., Humphries R. K. Molecular cloning of 114/A10, a cell surface antigen containing highly conserved repeated elements, which is expressed by murine hemopoietic progenitor cells and interleukin-3-dependent cell lines. J Biol Chem. 1989 Apr 15;264(11):6509–6514. [PubMed] [Google Scholar]
  9. Fallon J. R., Hall Z. W. Building synapses: agrin and dystroglycan stick together. Trends Neurosci. 1994 Nov;17(11):469–473. doi: 10.1016/0166-2236(94)90135-x. [DOI] [PubMed] [Google Scholar]
  10. Gronenborn A. M., Filpula D. R., Essig N. Z., Achari A., Whitlow M., Wingfield P. T., Clore G. M. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science. 1991 Aug 9;253(5020):657–661. doi: 10.1126/science.1871600. [DOI] [PubMed] [Google Scholar]
  11. Holm L., Sander C. The FSSP database of structurally aligned protein fold families. Nucleic Acids Res. 1994 Sep;22(17):3600–3609. [PMC free article] [PubMed] [Google Scholar]
  12. Kitamoto Y., Yuan X., Wu Q., McCourt D. W., Sadler J. E. Enterokinase, the initiator of intestinal digestion, is a mosaic protease composed of a distinctive assortment of domains. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7588–7592. doi: 10.1073/pnas.91.16.7588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Koonin E. V., Bork P., Sander C. Yeast chromosome III: new gene functions. EMBO J. 1994 Feb 1;13(3):493–503. doi: 10.1002/j.1460-2075.1994.tb06287.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Light A., Janska H. Enterokinase (enteropeptidase): comparative aspects. Trends Biochem Sci. 1989 Mar;14(3):110–112. doi: 10.1016/0968-0004(89)90133-3. [DOI] [PubMed] [Google Scholar]
  15. Matsushima M., Ichinose M., Yahagi N., Kakei N., Tsukada S., Miki K., Kurokawa K., Tashiro K., Shiokawa K., Shinomiya K. Structural characterization of porcine enteropeptidase. J Biol Chem. 1994 Aug 5;269(31):19976–19982. [PubMed] [Google Scholar]
  16. Mendoza L. M., Nishioka D., Vacquier V. D. A GPI-anchored sea urchin sperm membrane protein containing EGF domains is related to human uromodulin. J Cell Biol. 1993 Jun;121(6):1291–1297. doi: 10.1083/jcb.121.6.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nastuk M. A., Fallon J. R. Agrin and the molecular choreography of synapse formation. Trends Neurosci. 1993 Feb;16(2):72–76. doi: 10.1016/0166-2236(93)90020-m. [DOI] [PubMed] [Google Scholar]
  18. Patthy L. Detecting homology of distantly related proteins with consensus sequences. J Mol Biol. 1987 Dec 20;198(4):567–577. doi: 10.1016/0022-2836(87)90200-2. [DOI] [PubMed] [Google Scholar]
  19. Patthy L. Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules. Cell. 1985 Jul;41(3):657–663. doi: 10.1016/s0092-8674(85)80046-5. [DOI] [PubMed] [Google Scholar]
  20. Patthy L. Modular design of proteases of coagulation, fibrinolysis, and complement activation: implications for protein engineering and structure-function studies. Methods Enzymol. 1993;222:10–21. doi: 10.1016/0076-6879(93)22004-y. [DOI] [PubMed] [Google Scholar]
  21. Patthy L., Nikolics K. Functions of agrin and agrin-related proteins. Trends Neurosci. 1993 Feb;16(2):76–81. doi: 10.1016/0166-2236(93)90021-d. [DOI] [PubMed] [Google Scholar]
  22. Rogalski T. M., Williams B. D., Mullen G. P., Moerman D. G. Products of the unc-52 gene in Caenorhabditis elegans are homologous to the core protein of the mammalian basement membrane heparan sulfate proteoglycan. Genes Dev. 1993 Aug;7(8):1471–1484. doi: 10.1101/gad.7.8.1471. [DOI] [PubMed] [Google Scholar]
  23. Rohde K., Bork P. A fast, sensitive pattern-matching approach for protein sequences. Comput Appl Biosci. 1993 Apr;9(2):183–189. doi: 10.1093/bioinformatics/9.2.183. [DOI] [PubMed] [Google Scholar]
  24. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  25. Ruegg M. A., Tsim K. W., Horton S. E., Kröger S., Escher G., Gensch E. M., McMahan U. J. The agrin gene codes for a family of basal lamina proteins that differ in function and distribution. Neuron. 1992 Apr;8(4):691–699. doi: 10.1016/0896-6273(92)90090-z. [DOI] [PubMed] [Google Scholar]
  26. Rupp F., Ozçelik T., Linial M., Peterson K., Francke U., Scheller R. Structure and chromosomal localization of the mammalian agrin gene. J Neurosci. 1992 Sep;12(9):3535–3544. doi: 10.1523/JNEUROSCI.12-09-03535.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rupp F., Payan D. G., Magill-Solc C., Cowan D. M., Scheller R. H. Structure and expression of a rat agrin. Neuron. 1991 May;6(5):811–823. doi: 10.1016/0896-6273(91)90177-2. [DOI] [PubMed] [Google Scholar]
  28. Tatusov R. L., Altschul S. F., Koonin E. V. Detection of conserved segments in proteins: iterative scanning of sequence databases with alignment blocks. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12091–12095. doi: 10.1073/pnas.91.25.12091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tsen G., Halfter W., Kröger S., Cole G. J. Agrin is a heparan sulfate proteoglycan. J Biol Chem. 1995 Feb 17;270(7):3392–3399. doi: 10.1074/jbc.270.7.3392. [DOI] [PubMed] [Google Scholar]
  31. Tsim K. W., Ruegg M. A., Escher G., Kröger S., McMahan U. J. cDNA that encodes active agrin. Neuron. 1992 Apr;8(4):677–689. doi: 10.1016/0896-6273(92)90089-v. [DOI] [PubMed] [Google Scholar]
  32. Wassarman P. M. Zona pellucida glycoproteins. Annu Rev Biochem. 1988;57:415–442. doi: 10.1146/annurev.bi.57.070188.002215. [DOI] [PubMed] [Google Scholar]
  33. Wilson R., Ainscough R., Anderson K., Baynes C., Berks M., Bonfield J., Burton J., Connell M., Copsey T., Cooper J. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature. 1994 Mar 3;368(6466):32–38. doi: 10.1038/368032a0. [DOI] [PubMed] [Google Scholar]
  34. Zrihan-Licht S., Vos H. L., Baruch A., Elroy-Stein O., Sagiv D., Keydar I., Hilkens J., Wreschner D. H. Characterization and molecular cloning of a novel MUC1 protein, devoid of tandem repeats, expressed in human breast cancer tissue. Eur J Biochem. 1994 Sep 1;224(2):787–795. doi: 10.1111/j.1432-1033.1994.00787.x. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES