Abstract
Hemoglobin (Hb) S containing Leu, Ala, Thr, or Trp substitutions at beta 85 were made and expressed in yeast in an effort to evaluate the role of Phe-beta 85 in the acceptor pocket during polymerization of deoxy Hb S. The four Hb S variants have the same electrophoretic mobility as Hb S, and these beta 85 substitutions do not significantly affect heme-globin interactions and tetramer helix content. Hb S containing Trp-beta 85 had decreased oxygen affinity, whereas those with Leu-, Ala-, and Thr-beta 85 had increased oxygen affinity. All four supersaturated beta 85 variants polymerized with a delay time as does deoxy Hb S. This is in contrast to deoxy Hb S containing Phe-beta 88, Ala-beta 88, Glu-beta 88, or Glu-beta 85, which polymerized with no clear delay time (Adachi K, Konitzer P, Paulraj CG, Surrey S, 1994, J Biol Chem 269:17477-17480; Adachi K, Reddy LR, Surrey S, 1994, J Biol Chem 269:31563-31566). Leu substitution at beta 85 accelerated deoxy Hb S polymerization, whereas Ala, Thr, or Trp substitution inhibited polymerization. The length of the delay time and total polymer formed for these beta 85 Hb S variants depended on hemoglobin concentration in the same fashion as for deoxy Hb S: the higher the concentration, the shorter the delay time and the more polymer formed. Critical concentrations required for polymerization of deoxy Hb SF veta 85L, Hb SF beta 85A, Hb SF beta 85T, and Hb SF beta 85W are 0.65-, 2.2-, 2.5- and 3-fold higher, respectively, than Hb S.(ABSTRACT TRUNCATED AT 250 WORDS)
Full Text
The Full Text of this article is available as a PDF (602.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adachi K., Asakura T. Gelation of deoxyhemoglobin A in concentrated phosphate buffer. Exhibition of delay time prior to aggregation and crystallization of deoxyhemoglobin A. J Biol Chem. 1979 Dec 25;254(24):12273–12276. [PubMed] [Google Scholar]
- Adachi K., Asakura T. Nucleation-controlled aggregation of deoxyhemoglobin S. Possible difference in the size of nuclei in different phosphate concentrations. J Biol Chem. 1979 Aug 25;254(16):7765–7771. [PubMed] [Google Scholar]
- Adachi K., Konitzer P., Kim J., Welch N., Surrey S. Effects of beta 6 aromatic amino acids on polymerization and solubility of recombinant hemoglobins made in yeast. J Biol Chem. 1993 Oct 15;268(29):21650–21656. [PubMed] [Google Scholar]
- Adachi K., Konitzer P., Lai C. H., Kim J., Surrey S. Oxygen binding and other physical properties of human hemoglobin made in yeast. Protein Eng. 1992 Dec;5(8):807–810. doi: 10.1093/protein/5.8.807. [DOI] [PubMed] [Google Scholar]
- Adachi K., Konitzer P., Paulraj C. G., Surrey S. Role of Leu-beta 88 in the hydrophobic acceptor pocket for Val-beta 6 during hemoglobin S polymerization. J Biol Chem. 1994 Jul 1;269(26):17477–17480. [PubMed] [Google Scholar]
- Adachi K., Konitzer P., Surrey S. Role of gamma 87 Gln in the inhibition of hemoglobin S polymerization by hemoglobin F. J Biol Chem. 1994 Apr 1;269(13):9562–9567. [PubMed] [Google Scholar]
- Adachi K., Reddy L. R., Surrey S. Role of hydrophobicity of phenylalanine beta 85 and leucine beta 88 in the acceptor pocket for valine beta 6 during hemoglobin S polymerization. J Biol Chem. 1994 Dec 16;269(50):31563–31566. [PubMed] [Google Scholar]
- Baudin-Chich V., Pagnier J., Marden M., Bohn B., Lacaze N., Kister J., Schaad O., Edelstein S. J., Poyart C. Enhanced polymerization of recombinant human deoxyhemoglobin beta 6 Glu----Ile. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1845–1849. doi: 10.1073/pnas.87.5.1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bihoreau M. T., Baudin V., Marden M., Lacaze N., Bohn B., Kister J., Schaad O., Dumoulin A., Edelstein S. J., Poyart C. Steric and hydrophobic determinants of the solubilities of recombinant sickle cell hemoglobins. Protein Sci. 1992 Jan;1(1):145–150. doi: 10.1002/pro.5560010114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eaton W. A., Hofrichter J. Sickle cell hemoglobin polymerization. Adv Protein Chem. 1990;40:63–279. doi: 10.1016/s0065-3233(08)60287-9. [DOI] [PubMed] [Google Scholar]
- Hofmann O. M., Mould R. M., Brittain T. The incorporation of sulphaem into recombinant adult human haemoglobin produced in a yeast expression system. Protein Eng. 1994 Feb;7(2):281–283. [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Martin de Llano J. J., Manning J. M. Properties of a recombinant human hemoglobin double mutant: sickle hemoglobin with Leu-88(beta) at the primary aggregation site substituted by Ala. Protein Sci. 1994 Aug;3(8):1206–1212. doi: 10.1002/pro.5560030806. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nozaki Y., Tanford C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J Biol Chem. 1971 Apr 10;246(7):2211–2217. [PubMed] [Google Scholar]
- Witkowska H. E., Lubin B. H., Beuzard Y., Baruchel S., Esseltine D. W., Vichinsky E. P., Kleman K. M., Bardakdjian-Michau J., Pinkoski L., Cahn S. Sickle cell disease in a patient with sickle cell trait and compound heterozygosity for hemoglobin S and hemoglobin Quebec-Chori. N Engl J Med. 1991 Oct 17;325(16):1150–1154. doi: 10.1056/NEJM199110173251607. [DOI] [PubMed] [Google Scholar]
