Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Jul;4(7):1325–1336. doi: 10.1002/pro.5560040708

N- and C-capping preferences for all 20 amino acids in alpha-helical peptides.

A J Doig 1, R L Baldwin 1
PMCID: PMC2143170  PMID: 7670375

Abstract

We have determined the N- and C-capping preferences of all 20 amino acids by substituting residue X in the peptides NH2-XAKAAAAKAAAAKAAGY-CONH2 and in Ac-YGAAKAAAAKAAAAKAX-CO2H. Helix contents were measured by CD spectroscopy to obtain rank orders of capping preferences. The data were further analyzed by our modified Lifson-Roig helix-coil theory, which includes capping parameters (n and c), to find free energies of capping (-RT ln n and -RT ln c), relative to Ala. Results were obtained for charged and uncharged termini and for different charged states of titratable side chains. N-cap preferences varied from Asn (best) to Gln (worst). We find, as expected, that amino acids that can accept hydrogen bonds from otherwise free backbone NH groups, such as Asn, Asp, Ser, Thr, and Cys generally have the highest N-cap preference. Gly and acetyl group are favored, as are negative charges in side chains and at the N-terminus. Our N-cap preference scale agrees well with preferences in proteins. In contrast, we find little variation when changing the identity of the C-cap residue. We find no preference for Gly at the C-cap in contrast to the situation in proteins. Both N-cap and C-cap results for Tyr and Trp are inaccurate because their aromatic groups affect the CD spectrum. The data presented here are of value in rationalizing mutations at capping sites in proteins and in predicting the helix contents of peptides.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell J. A., Becktel W. J., Sauer U., Baase W. A., Matthews B. W. Dissection of helix capping in T4 lysozyme by structural and thermodynamic analysis of six amino acid substitutions at Thr 59. Biochemistry. 1992 Apr 14;31(14):3590–3596. doi: 10.1021/bi00129a006. [DOI] [PubMed] [Google Scholar]
  2. Bork P., Preissner R. On alpha-helices terminated by glycine. 2. Recognition by sequence patterns. Biochem Biophys Res Commun. 1991 Oct 31;180(2):666–672. doi: 10.1016/s0006-291x(05)81117-9. [DOI] [PubMed] [Google Scholar]
  3. Bruch M. D., Dhingra M. M., Gierasch L. M. Side chain-backbone hydrogen bonding contributes to helix stability in peptides derived from an alpha-helical region of carboxypeptidase A. Proteins. 1991;10(2):130–139. doi: 10.1002/prot.340100206. [DOI] [PubMed] [Google Scholar]
  4. Chakrabartty A., Doig A. J., Baldwin R. L. Helix capping propensities in peptides parallel those in proteins. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11332–11336. doi: 10.1073/pnas.90.23.11332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chakrabartty A., Kortemme T., Baldwin R. L. Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions. Protein Sci. 1994 May;3(5):843–852. doi: 10.1002/pro.5560030514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dasgupta S., Bell J. A. Design of helix ends. Amino acid preferences, hydrogen bonding and electrostatic interactions. Int J Pept Protein Res. 1993 May;41(5):499–511. [PubMed] [Google Scholar]
  7. Ebina S., Wüthrich K. Amide proton titration shifts in bull seminal inhibitor IIA by two-dimensional correlated 1H nuclear magnetic resonance (COSY). Manifestation of conformational equilibria involving carboxylate groups. J Mol Biol. 1984 Oct 25;179(2):283–288. doi: 10.1016/0022-2836(84)90469-8. [DOI] [PubMed] [Google Scholar]
  8. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
  9. Fairman R., Shoemaker K. R., York E. J., Stewart J. M., Baldwin R. L. Further studies of the helix dipole model: effects of a free alpha-NH3+ or alpha-COO- group on helix stability. Proteins. 1989;5(1):1–7. doi: 10.1002/prot.340050102. [DOI] [PubMed] [Google Scholar]
  10. Forood B., Feliciano E. J., Nambiar K. P. Stabilization of alpha-helical structures in short peptides via end capping. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):838–842. doi: 10.1073/pnas.90.3.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harpaz Y., Elmasry N., Fersht A. R., Henrick K. Direct observation of better hydration at the N terminus of an alpha-helix with glycine rather than alanine as the N-cap residue. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):311–315. doi: 10.1073/pnas.91.1.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harper E. T., Rose G. D. Helix stop signals in proteins and peptides: the capping box. Biochemistry. 1993 Aug 3;32(30):7605–7609. doi: 10.1021/bi00081a001. [DOI] [PubMed] [Google Scholar]
  13. Heinz D. W., Baase W. A., Dahlquist F. W., Matthews B. W. How amino-acid insertions are allowed in an alpha-helix of T4 lysozyme. Nature. 1993 Feb 11;361(6412):561–564. doi: 10.1038/361561a0. [DOI] [PubMed] [Google Scholar]
  14. Kaarsholm N. C., Norris K., Jørgensen R. J., Mikkelsen J., Ludvigsen S., Olsen O. H., Sørensen A. R., Havelund S. Engineering stability of the insulin monomer fold with application to structure-activity relationships. Biochemistry. 1993 Oct 12;32(40):10773–10778. doi: 10.1021/bi00091a031. [DOI] [PubMed] [Google Scholar]
  15. Lovejoy B., Choe S., Cascio D., McRorie D. K., DeGrado W. F., Eisenberg D. Crystal structure of a synthetic triple-stranded alpha-helical bundle. Science. 1993 Feb 26;259(5099):1288–1293. doi: 10.1126/science.8446897. [DOI] [PubMed] [Google Scholar]
  16. Lyu P. C., Liff M. I., Marky L. A., Kallenbach N. R. Side chain contributions to the stability of alpha-helical structure in peptides. Science. 1990 Nov 2;250(4981):669–673. doi: 10.1126/science.2237416. [DOI] [PubMed] [Google Scholar]
  17. Lyu P. C., Wemmer D. E., Zhou H. X., Pinker R. J., Kallenbach N. R. Capping interactions in isolated alpha helices: position-dependent substitution effects and structure of a serine-capped peptide helix. Biochemistry. 1993 Jan 19;32(2):421–425. doi: 10.1021/bi00053a006. [DOI] [PubMed] [Google Scholar]
  18. Merutka G., Stellwagen E. Positional independence and additivity of amino acid replacements on helix stability in monomeric peptides. Biochemistry. 1990 Jan 30;29(4):894–898. doi: 10.1021/bi00456a007. [DOI] [PubMed] [Google Scholar]
  19. Milner-White E. J. Recurring loop motif in proteins that occurs in right-handed and left-handed forms. Its relationship with alpha-helices and beta-bulge loops. J Mol Biol. 1988 Feb 5;199(3):503–511. doi: 10.1016/0022-2836(88)90621-3. [DOI] [PubMed] [Google Scholar]
  20. Muñoz V., Serrano L. Elucidating the folding problem of helical peptides using empirical parameters. Nat Struct Biol. 1994 Jun;1(6):399–409. doi: 10.1038/nsb0694-399. [DOI] [PubMed] [Google Scholar]
  21. Nagarajaram H. A., Sowdhamini R., Ramakrishnan C., Balaram P. Termination of right handed helices in proteins by residues in left handed helical conformations. FEBS Lett. 1993 Apr 19;321(1):79–83. doi: 10.1016/0014-5793(93)80625-5. [DOI] [PubMed] [Google Scholar]
  22. Nicholson H., Becktel W. J., Matthews B. W. Enhanced protein thermostability from designed mutations that interact with alpha-helix dipoles. Nature. 1988 Dec 15;336(6200):651–656. doi: 10.1038/336651a0. [DOI] [PubMed] [Google Scholar]
  23. Preissner R., Bork P. On alpha-helices terminated by glycine. 1. Identification of common structural features. Biochem Biophys Res Commun. 1991 Oct 31;180(2):660–665. doi: 10.1016/s0006-291x(05)81116-7. [DOI] [PubMed] [Google Scholar]
  24. Presta L. G., Rose G. D. Helix signals in proteins. Science. 1988 Jun 17;240(4859):1632–1641. doi: 10.1126/science.2837824. [DOI] [PubMed] [Google Scholar]
  25. Ptitsyn O. B. Thermodynamic parameters of helix-coil transitions in polypeptide chains. Pure Appl Chem. 1972;31(1):227–244. doi: 10.1351/pac197231010227. [DOI] [PubMed] [Google Scholar]
  26. Regan L. What determines where alpha-helices begin and end? Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10907–10908. doi: 10.1073/pnas.90.23.10907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  28. Rohl C. A., Baldwin R. L. Exchange kinetics of individual amide protons in 15N-labeled helical peptides measured by isotope-edited NMR. Biochemistry. 1994 Jun 28;33(25):7760–7767. doi: 10.1021/bi00191a003. [DOI] [PubMed] [Google Scholar]
  29. Rohl C. A., Scholtz J. M., York E. J., Stewart J. M., Baldwin R. L. Kinetics of amide proton exchange in helical peptides of varying chain lengths. Interpretation by the Lifson-Roig equation. Biochemistry. 1992 Feb 11;31(5):1263–1269. doi: 10.1021/bi00120a001. [DOI] [PubMed] [Google Scholar]
  30. Scholtz J. M., Qian H., York E. J., Stewart J. M., Baldwin R. L. Parameters of helix-coil transition theory for alanine-based peptides of varying chain lengths in water. Biopolymers. 1991 Nov;31(13):1463–1470. doi: 10.1002/bip.360311304. [DOI] [PubMed] [Google Scholar]
  31. Serrano L., Neira J. L., Sancho J., Fersht A. R. Effect of alanine versus glycine in alpha-helices on protein stability. Nature. 1992 Apr 2;356(6368):453–455. doi: 10.1038/356453a0. [DOI] [PubMed] [Google Scholar]
  32. Serrano L., Sancho J., Hirshberg M., Fersht A. R. Alpha-helix stability in proteins. I. Empirical correlations concerning substitution of side-chains at the N and C-caps and the replacement of alanine by glycine or serine at solvent-exposed surfaces. J Mol Biol. 1992 Sep 20;227(2):544–559. doi: 10.1016/0022-2836(92)90906-z. [DOI] [PubMed] [Google Scholar]
  33. Tidor B. Helix-capping interaction in lambda Cro protein: a free energy simulation analysis. Proteins. 1994 Aug;19(4):310–323. doi: 10.1002/prot.340190406. [DOI] [PubMed] [Google Scholar]
  34. Zhukovsky E. A., Mulkerrin M. G., Presta L. G. Contribution to global protein stabilization of the N-capping box in human growth hormone. Biochemistry. 1994 Aug 23;33(33):9856–9864. doi: 10.1021/bi00199a006. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES