Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Jul;4(7):1279–1290. doi: 10.1002/pro.5560040704

Solution secondary structure of calcium-saturated troponin C monomer determined by multidimensional heteronuclear NMR spectroscopy.

C M Slupsky 1, F C Reinach 1, L B Smillie 1, B D Sykes 1
PMCID: PMC2143172  PMID: 7670371

Abstract

The solution secondary structure of calcium-saturated skeletal troponin C (TnC) in the presence of 15% (v/v) trifluoroethanol (TFE), which has been shown to exist predominantly as a monomer (Slupsky CM, Kay CM, Reinach FC, Smillie LB, Sykes BD, 1995, Biochemistry 34, forthcoming), has been investigated using multidimensional heteronuclear nuclear magnetic resonance spectroscopy. The 1H, 15N, and 13C NMR chemical shift values for TnC in the presence of TFE are very similar to values obtained for calcium-saturated NTnC (residues 1-90 of skeletal TnC), calmodulin, and synthetic peptide homodimers. Moreover, the secondary structure elements of TnC are virtually identical to those obtained for calcium-saturated NTnC, calmodulin, and the synthetic peptide homodimers, suggesting that 15% (v/v) TFE minimally perturbs the secondary and tertiary structure of this stably folded protein. Comparison of the solution structure of calcium-saturated TnC with the X-ray crystal structure of half-saturated TnC reveals differences in the phi/psi angles of residue Glu 41 and in the linker between the two domains. Glu 41 has irregular phi/psi angles in the crystal structure, producing a kink in the B helix, whereas in calcium-saturated TnC, Glu 41 has helical phi/psi angles, resulting in a straight B helix. The linker between the N and C domains of calcium-saturated TnC is flexible in the solution structure.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babu A., Rao V. G., Su H., Gulati J. Critical minimum length of the central helix in troponin C for the Ca2+ switch in muscular contraction. J Biol Chem. 1993 Sep 15;268(26):19232–19238. [PubMed] [Google Scholar]
  2. Barbato G., Ikura M., Kay L. E., Pastor R. W., Bax A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry. 1992 Jun 16;31(23):5269–5278. doi: 10.1021/bi00138a005. [DOI] [PubMed] [Google Scholar]
  3. Dobrowolski Z., Xu G. Q., Chen W., Hitchcock-DeGregori S. E. Analysis of the regulatory and structural defects of troponin C central helix mutants. Biochemistry. 1991 Jul 23;30(29):7089–7096. doi: 10.1021/bi00243a008. [DOI] [PubMed] [Google Scholar]
  4. Fujimori K., Sorenson M., Herzberg O., Moult J., Reinach F. C. Probing the calcium-induced conformational transition of troponin C with site-directed mutants. Nature. 1990 May 10;345(6271):182–184. doi: 10.1038/345182a0. [DOI] [PubMed] [Google Scholar]
  5. Gagné S. M., Tsuda S., Li M. X., Chandra M., Smillie L. B., Sykes B. D. Quantification of the calcium-induced secondary structural changes in the regulatory domain of troponin-C. Protein Sci. 1994 Nov;3(11):1961–1974. doi: 10.1002/pro.5560031108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grabarek Z., Tao T., Gergely J. Molecular mechanism of troponin-C function. J Muscle Res Cell Motil. 1992 Aug;13(4):383–393. doi: 10.1007/BF01738034. [DOI] [PubMed] [Google Scholar]
  7. Gronenborn A. M., Clore G. M. Where is NMR taking us? Proteins. 1994 Aug;19(4):273–276. doi: 10.1002/prot.340190402. [DOI] [PubMed] [Google Scholar]
  8. Gulati J., Babu A., Su H., Zhang Y. F. Identification of the regions conferring calmodulin-like properties to troponin C. J Biol Chem. 1993 Jun 5;268(16):11685–11690. [PubMed] [Google Scholar]
  9. Gulati J., Persechini A., Babu A. Central helix role in the contraction-relaxation switching mechanisms of permeabilized skeletal and smooth muscles with genetic manipulation of calmodulin. FEBS Lett. 1990 Apr 24;263(2):340–344. doi: 10.1016/0014-5793(90)81409-h. [DOI] [PubMed] [Google Scholar]
  10. Gusev N. B., Grabarek Z., Gergely J. Stabilization by a disulfide bond of the N-terminal domain of a mutant troponin C (TnC48/82). J Biol Chem. 1991 Sep 5;266(25):16622–16626. [PubMed] [Google Scholar]
  11. Heidorn D. B., Trewhella J. Comparison of the crystal and solution structures of calmodulin and troponin C. Biochemistry. 1988 Feb 9;27(3):909–915. doi: 10.1021/bi00403a011. [DOI] [PubMed] [Google Scholar]
  12. Herzberg O., James M. N. Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 A resolution. J Mol Biol. 1988 Oct 5;203(3):761–779. doi: 10.1016/0022-2836(88)90208-2. [DOI] [PubMed] [Google Scholar]
  13. Herzberg O., Moult J., James M. N. A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction. J Biol Chem. 1986 Feb 25;261(6):2638–2644. [PubMed] [Google Scholar]
  14. Ikura M., Kay L. E., Bax A. A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry. 1990 May 15;29(19):4659–4667. doi: 10.1021/bi00471a022. [DOI] [PubMed] [Google Scholar]
  15. Ikura M., Spera S., Barbato G., Kay L. E., Krinks M., Bax A. Secondary structure and side-chain 1H and 13C resonance assignments of calmodulin in solution by heteronuclear multidimensional NMR spectroscopy. Biochemistry. 1991 Sep 24;30(38):9216–9228. doi: 10.1021/bi00102a013. [DOI] [PubMed] [Google Scholar]
  16. Kay L. E., Forman-Kay J. D., McCubbin W. D., Kay C. M. Solution structure of a polypeptide dimer comprising the fourth Ca(2+)-binding site of troponin C by nuclear magnetic resonance spectroscopy. Biochemistry. 1991 Apr 30;30(17):4323–4333. doi: 10.1021/bi00231a031. [DOI] [PubMed] [Google Scholar]
  17. Levine B. A., Coffman D. M., Thornton J. M. Calcium binding by troponin-C. A proton magnetic resonance study. J Mol Biol. 1977 Oct 5;115(4):743–760. doi: 10.1016/0022-2836(77)90113-9. [DOI] [PubMed] [Google Scholar]
  18. Marion D., Driscoll P. C., Kay L. E., Wingfield P. T., Bax A., Gronenborn A. M., Clore G. M. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry. 1989 Jul 25;28(15):6150–6156. doi: 10.1021/bi00441a004. [DOI] [PubMed] [Google Scholar]
  19. Meadows R. P., Olejniczak E. T., Fesik S. W. A computer-based protocol for semiautomated assignments and 3D structure determination of proteins. J Biomol NMR. 1994 Jan;4(1):79–96. doi: 10.1007/BF00178337. [DOI] [PubMed] [Google Scholar]
  20. Means A. R., Dedman J. R. Calmodulin--an intracellular calcium receptor. Nature. 1980 May 8;285(5760):73–77. doi: 10.1038/285073a0. [DOI] [PubMed] [Google Scholar]
  21. Olah G. A., Trewhella J. A model structure of the muscle protein complex 4Ca2+.troponin C.troponin I derived from small-angle scattering data: implications for regulation. Biochemistry. 1994 Nov 1;33(43):12800–12806. doi: 10.1021/bi00209a011. [DOI] [PubMed] [Google Scholar]
  22. Pearlstone J. R., McCubbin W. D., Kay C. M., Sykes B. D., Smillie L. B. Spectroscopic analysis of a methionine-48 to tyrosine mutant of chicken troponin C. Biochemistry. 1992 Oct 13;31(40):9703–9708. doi: 10.1021/bi00155a025. [DOI] [PubMed] [Google Scholar]
  23. Reinach F. C., Karlsson R. Cloning, expression, and site-directed mutagenesis of chicken skeletal muscle troponin C. J Biol Chem. 1988 Feb 15;263(5):2371–2376. [PubMed] [Google Scholar]
  24. Satyshur K. A., Pyzalska D., Greaser M., Rao S. T., Sundaralingam M. Structure of chicken skeletal muscle troponin C at 1.78 A resolution. Acta Crystallogr D Biol Crystallogr. 1994 Jan 1;50(Pt 1):40–49. doi: 10.1107/S090744499300798X. [DOI] [PubMed] [Google Scholar]
  25. Satyshur K. A., Rao S. T., Pyzalska D., Drendel W., Greaser M., Sundaralingam M. Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2-A resolution. J Biol Chem. 1988 Feb 5;263(4):1628–1647. [PubMed] [Google Scholar]
  26. Shaw G. S., Hodges R. S., Sykes B. D. Calcium-induced peptide association to form an intact protein domain: 1H NMR structural evidence. Science. 1990 Jul 20;249(4966):280–283. doi: 10.1126/science.2374927. [DOI] [PubMed] [Google Scholar]
  27. Shaw G. S., Hodges R. S., Sykes B. D. Determination of the solution structure of a synthetic two-site calcium-binding homodimeric protein domain by NMR spectroscopy. Biochemistry. 1992 Oct 13;31(40):9572–9580. doi: 10.1021/bi00155a009. [DOI] [PubMed] [Google Scholar]
  28. Tsuda S., Hasegawa Y., Yoshida M., Yagi K., Hikichi K. Nuclear magnetic resonance study on rabbit skeletal troponin C: calcium-induced conformational change. Biochemistry. 1988 May 31;27(11):4120–4126. doi: 10.1021/bi00411a032. [DOI] [PubMed] [Google Scholar]
  29. Tsuda S., Ogura K., Hasegawa Y., Yagi K., Hikichi K. 1H NMR study of rabbit skeletal muscle troponin C: Mg2(+)-induced conformational change. Biochemistry. 1990 May 22;29(20):4951–4958. doi: 10.1021/bi00472a027. [DOI] [PubMed] [Google Scholar]
  30. Wagner G. Prospects for NMR of large proteins. J Biomol NMR. 1993 Jul;3(4):375–385. doi: 10.1007/BF00176005. [DOI] [PubMed] [Google Scholar]
  31. Wang C. K., Liao R., Cheung H. C. Rotational dynamics of skeletal muscle troponin C. J Biol Chem. 1993 Jul 15;268(20):14671–14677. [PubMed] [Google Scholar]
  32. Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]
  33. Wishart D. S., Sykes B. D., Richards F. M. Simple techniques for the quantification of protein secondary structure by 1H NMR spectroscopy. FEBS Lett. 1991 Nov 18;293(1-2):72–80. doi: 10.1016/0014-5793(91)81155-2. [DOI] [PubMed] [Google Scholar]
  34. Wishart D. S., Sykes B. D. The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR. 1994 Mar;4(2):171–180. doi: 10.1007/BF00175245. [DOI] [PubMed] [Google Scholar]
  35. Xu G. Q., Hitchcock-DeGregori S. E. Synthesis of a troponin C cDNA and expression of wild-type and mutant proteins in Escherichia coli. J Biol Chem. 1988 Sep 25;263(27):13962–13969. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES