Abstract
The specificity of GalNAc-transferase is consistent with the existence of an extended site composed of nine subsites, denoted by R4, R3, R2, R1, R0, R1', R2', R3', and R4', where the acceptor at R0 is either Ser or Thr to which the reducing monosaccharide is being anchored. To predict whether a peptide will react with the enzyme to form a Ser- or Thr-conjugated glycopeptide, a new method has been proposed based on the vector-projection approach as well as the sequence-coupled principle. By incorporating the sequence-coupled effect among the subsites, the interaction mechanism among subsites during glycosylation can be reflected and, by using the vector projection approach, arbitrary assignment for insufficient experimental data can be avoided. The very high ratio of correct predictions versus total predictions for the data in both the training and the testing sets indicates that the method is self-consistent and efficient. It provides a rapid means for predicting O-glycosylation and designing effective inhibitors of GalNAc-transferase, which might be useful for targeting drugs to specific sites in the body and for enzyme replacement therapy for the treatment of genetic disorders.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aubert J. P., Biserte G., Loucheux-Lefebvre M. H. Carbohydrate-peptide linkage in glycoproteins. Arch Biochem Biophys. 1976 Aug;175(2):410–418. doi: 10.1016/0003-9861(76)90528-2. [DOI] [PubMed] [Google Scholar]
- Chou K. C. A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins. J Biol Chem. 1993 Aug 15;268(23):16938–16948. [PubMed] [Google Scholar]
- Chou K. C., Zhang C. T. A correlation-coefficient method to predicting protein-structural classes from amino acid compositions. Eur J Biochem. 1992 Jul 15;207(2):429–423. doi: 10.1111/j.1432-1033.1992.tb17067.x. [DOI] [PubMed] [Google Scholar]
- Chou K. C., Zhang C. T. A new approach to predicting protein folding types. J Protein Chem. 1993 Apr;12(2):169–178. doi: 10.1007/BF01026038. [DOI] [PubMed] [Google Scholar]
- Chou K. C., Zhang C. T., Kézdy F. J. A vector projection approach to predicting HIV protease cleavage sites in proteins. Proteins. 1993 Jun;16(2):195–204. doi: 10.1002/prot.340160206. [DOI] [PubMed] [Google Scholar]
- Elhammer A. P., Poorman R. A., Brown E., Maggiora L. L., Hoogerheide J. G., Kézdy F. J. The specificity of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase as inferred from a database of in vivo substrates and from the in vitro glycosylation of proteins and peptides. J Biol Chem. 1993 May 15;268(14):10029–10038. [PubMed] [Google Scholar]
- Goochee C. F., Monica T. Environmental effects on protein glycosylation. Biotechnology (N Y) 1990 May;8(5):421–427. doi: 10.1038/nbt0590-421. [DOI] [PubMed] [Google Scholar]
- Hart G. W., Holt G. D., Haltiwanger R. S. Nuclear and cytoplasmic glycosylation: novel saccharide linkages in unexpected places. Trends Biochem Sci. 1988 Oct;13(10):380–384. doi: 10.1016/0968-0004(88)90179-x. [DOI] [PubMed] [Google Scholar]
- Hill H. D., Jr, Schwyzer M., Steinman H. M., Hill R. L. Ovine submaxillary mucin. Primary structure and peptide substrates of UDP-N-acetylgalactosamine:mucin transferase. J Biol Chem. 1977 Jun 10;252(11):3799–3804. [PubMed] [Google Scholar]
- Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
- Oppenheim F. G., Offner G. D., Troxler R. F. Amino acid sequence of a proline-rich phosphoglycoprotein from parotid secretion of the subhuman primate Macaca fascicularis. J Biol Chem. 1985 Sep 5;260(19):10671–10679. [PubMed] [Google Scholar]
- Pisano A., Redmond J. W., Williams K. L., Gooley A. A. Glycosylation sites identified by solid-phase Edman degradation: O-linked glycosylation motifs on human glycophorin A. Glycobiology. 1993 Oct;3(5):429–435. doi: 10.1093/glycob/3.5.429. [DOI] [PubMed] [Google Scholar]
- Poorman R. A., Tomasselli A. G., Heinrikson R. L., Kézdy F. J. A cumulative specificity model for proteases from human immunodeficiency virus types 1 and 2, inferred from statistical analysis of an extended substrate data base. J Biol Chem. 1991 Aug 5;266(22):14554–14561. [PubMed] [Google Scholar]
- Rodén L., Smith R. Structure of the neutral trisaccharide of the chondroitin 4-sulfate-protein linkage region. J Biol Chem. 1966 Dec 25;241(24):5949–5954. [PubMed] [Google Scholar]
- Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
- Schmid K., Hediger M. A., Brossmer R., Collins J. H., Haupt H., Marti T., Offner G. D., Schaller J., Takagaki K., Walsh M. T. Amino acid sequence of human plasma galactoglycoprotein: identity with the extracellular region of CD43 (sialophorin). Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):663–667. doi: 10.1073/pnas.89.2.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taniguchi T., Mizuochi T., Beale M., Dwek R. A., Rademacher T. W., Kobata A. Structures of the sugar chains of rabbit immunoglobulin G: occurrence of asparagine-linked sugar chains in Fab fragment. Biochemistry. 1985 Sep 24;24(20):5551–5557. doi: 10.1021/bi00341a040. [DOI] [PubMed] [Google Scholar]
- Vrielink A., Rüger W., Driessen H. P., Freemont P. S. Crystal structure of the DNA modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J. 1994 Aug 1;13(15):3413–3422. doi: 10.1002/j.1460-2075.1994.tb06646.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watzlawick H., Walsh M. T., Yoshioka Y., Schmid K., Brossmer R. Structure of the N- and O-glycans of the A-chain of human plasma alpha 2HS-glycoprotein as deduced from the chemical compositions of the derivatives prepared by stepwise degradation with exoglycosidases. Biochemistry. 1992 Dec 8;31(48):12198–12203. doi: 10.1021/bi00163a032. [DOI] [PubMed] [Google Scholar]
- West C. M. Current ideas on the significance of protein glycosylation. Mol Cell Biochem. 1986 Nov-Dec;72(1-2):3–20. doi: 10.1007/BF00230632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young J. D., Tsuchiya D., Sandlin D. E., Holroyde M. J. Enzymic O-glycosylation of synthetic peptides from sequences in basic myelin protein. Biochemistry. 1979 Oct 2;18(20):4444–4448. doi: 10.1021/bi00587a026. [DOI] [PubMed] [Google Scholar]
- Zhang C. T., Chou K. C. An alternate-subsite-coupled model for predicting HIV protease cleavage sites in proteins. Protein Eng. 1994 Jan;7(1):65–73. doi: 10.1093/protein/7.1.65. [DOI] [PubMed] [Google Scholar]