Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Aug;4(8):1658–1660. doi: 10.1002/pro.5560040826

Crystallization and preliminary X-ray diffraction studies of the human adenovirus serotype 2 proteinase with peptide cofactor.

L J Keefe 1, S L Ginell 1, E M Westbrook 1, C W Anderson 1
PMCID: PMC2143177  PMID: 8520494

Abstract

Recombinant human adenovirus serotype 2 proteinase (both native and selenomethionine-substituted) has been crystallized in the presence of the serotype 12, 11-residue peptide cofactor. The crystals (space group P3(1)21 or P3(2)21, one molecule per asymmetric unit, a = b = 41.3 angstrum, c = 197.0 angstrum) grew in solutions containing 20-40% 2-methyl-2,4-pentanediol (MPD), 0.1-0.2 M sodium citrate, and 0.1 M sodium HEPES, pH 5.0-7.5. Diffraction data (84% complete to 2.2 angstrum resolution with Rmerge of 0.0335) have been measured from cryopreserved native enzyme crystals with the Argonne blue (1,024 x 1,024 pixel array) charge-coupled device detector at beamline X8C at the National Synchrotron Light Source (operated by Argonne National Laboratory's Structural Biology Center). Additionally, diffraction data from selenomethionine-substituted proteinase, 65% complete to 2.0 angstrum resolution with Rmerge values ranging 0.05-0.07, have been collected at three X-ray energies at and near the selenium absorption edge. We have determined three of the six selenium sites and are initiating a structure solution by the method of multiwavelength anomalous diffraction phasing.

Full Text

The Full Text of this article is available as a PDF (358.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. W. Expression and purification of the adenovirus proteinase polypeptide and of a synthetic proteinase substrate. Protein Expr Purif. 1993 Feb;4(1):8–15. doi: 10.1006/prep.1993.1002. [DOI] [PubMed] [Google Scholar]
  2. Anderson C. W. The proteinase polypeptide of adenovirus serotype 2 virions. Virology. 1990 Jul;177(1):259–272. doi: 10.1016/0042-6822(90)90479-b. [DOI] [PubMed] [Google Scholar]
  3. Dougherty W. G., Semler B. L. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiol Rev. 1993 Dec;57(4):781–822. doi: 10.1128/mr.57.4.781-822.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Freimuth P., Anderson C. W. Human adenovirus serotype 12 virion precursors pMu and pVI are cleaved at amino-terminal and carboxy-terminal sites that conform to the adenovirus 2 endoproteinase cleavage consensus sequence. Virology. 1993 Mar;193(1):348–355. doi: 10.1006/viro.1993.1131. [DOI] [PubMed] [Google Scholar]
  5. Hendrickson W. A., Horton J. R., LeMaster D. M. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 1990 May;9(5):1665–1672. doi: 10.1002/j.1460-2075.1990.tb08287.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hope H. Cryocrystallography of biological macromolecules: a generally applicable method. Acta Crystallogr B. 1988 Feb 1;44(Pt 1):22–26. doi: 10.1107/s0108768187008632. [DOI] [PubMed] [Google Scholar]
  7. Houde A., Weber J. M. Adenovirus proteinases: comparison of amino acid sequences and expression of the cloned cDNA in Escherichia coli. Gene. 1990 Apr 16;88(2):269–273. doi: 10.1016/0378-1119(90)90042-p. [DOI] [PubMed] [Google Scholar]
  8. Kräusslich H. G., Wimmer E. Viral proteinases. Annu Rev Biochem. 1988;57:701–754. doi: 10.1146/annurev.bi.57.070188.003413. [DOI] [PubMed] [Google Scholar]
  9. Leahy D. J., Erickson H. P., Aukhil I., Joshi P., Hendrickson W. A. Crystallization of a fragment of human fibronectin: introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine. Proteins. 1994 May;19(1):48–54. doi: 10.1002/prot.340190107. [DOI] [PubMed] [Google Scholar]
  10. Mangel W. F., McGrath W. J., Toledo D. L., Anderson C. W. Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature. 1993 Jan 21;361(6409):274–275. doi: 10.1038/361274a0. [DOI] [PubMed] [Google Scholar]
  11. Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  12. Rancourt C., Tihanyi K., Bourbonniere M., Weber J. M. Identification of active-site residues of the adenovirus endopeptidase. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):844–847. doi: 10.1073/pnas.91.3.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Weber J. M., Tihanyi K. Adenovirus endopeptidases. Methods Enzymol. 1994;244:595–604. doi: 10.1016/0076-6879(94)44043-3. [DOI] [PubMed] [Google Scholar]
  14. Webster A., Hay R. T., Kemp G. The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Cell. 1993 Jan 15;72(1):97–104. doi: 10.1016/0092-8674(93)90053-s. [DOI] [PubMed] [Google Scholar]
  15. Webster A., Russell S., Talbot P., Russell W. C., Kemp G. D. Characterization of the adenovirus proteinase: substrate specificity. J Gen Virol. 1989 Dec;70(Pt 12):3225–3234. doi: 10.1099/0022-1317-70-12-3225. [DOI] [PubMed] [Google Scholar]
  16. Zhang Y., Schneider R. J. Adenovirus inhibition of cell translation facilitates release of virus particles and enhances degradation of the cytokeratin network. J Virol. 1994 Apr;68(4):2544–2555. doi: 10.1128/jvi.68.4.2544-2555.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES