Abstract
Urea-induced dissociation and unfolding of manganese.glutamine synthetase (Mn.GS) have been studied at 37 degrees C (pH 7) by spectroscopic and calorimetric methods. In 0 to approximately 2 M urea, Mn.GS retains its dodecameric structure and full catalytic activity. Mn.GS is dissociated into subunits in 6 M urea, as evidenced by a 12-fold decrease in 90 degrees light scattering and a monomer molecular weight of 51,800 in sedimentation equilibrium studies. The light scattering decrease in 4 M urea parallels the time course of Trp exposure but occurs more rapidly than changes in secondary structure and Tyr exposure. Early and late kinetic steps appear to involve predominantly disruption of intra-ring and inter-ring subunit contacts, respectively, in the layered hexagonal structure of Mn.GS. The enthalpies for transferring Mn.GS into urea solutions have been measured by titration calorimetry. After correcting for the enthalpy of binding urea to the protein, the enthalpy of dissociation and unfolding of Mn.GS is 14 +/- 4 cal/g. A net proton uptake of approximately 50 H+/dodecamer accompanies unfolding reactions. The calorimetric data are consistent with urea binding to multiple, independent sites in Mn.GS and the number of binding sites increasing approximately 9-fold during the protein unfolding.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beres L., Sturtevant J. M. Calorimetric studies of the activation of chymotrypsinogen A. Biochemistry. 1971 May 25;10(11):2120–2126. doi: 10.1021/bi00787a025. [DOI] [PubMed] [Google Scholar]
- Chen A., Wadsö I. Simultaneous determination of delta G, delta H and delta S by an automatic microcalorimetric titration technique. Application to protein ligand binding. J Biochem Biophys Methods. 1982 Sep;6(4):307–316. doi: 10.1016/0165-022x(82)90012-4. [DOI] [PubMed] [Google Scholar]
- Ciardi J. E., Cimino F., Stadtman E. R. Multiple forms of glutamine synthetase. Hybrid formation by association of adenylylated and unadenylylated subunits. Biochemistry. 1973 Oct 23;12(22):4321–4330. doi: 10.1021/bi00746a004. [DOI] [PubMed] [Google Scholar]
- Colombo G., Villafranca J. J. Amino acid sequence of Escherichia coli glutamine synthetase deduced from the DNA nucleotide sequence. J Biol Chem. 1986 Aug 15;261(23):10587–10591. [PubMed] [Google Scholar]
- Fisher M. T., Stadtman E. R. Oxidative modification of Escherichia coli glutamine synthetase. Decreases in the thermodynamic stability of protein structure and specific changes in the active site conformation. J Biol Chem. 1992 Jan 25;267(3):1872–1880. [PubMed] [Google Scholar]
- Fisher M. T. The effect of groES on the groEL-dependent assembly of dodecameric glutamine synthetase in the presence of ATP and ADP. J Biol Chem. 1994 May 6;269(18):13629–13636. [PubMed] [Google Scholar]
- Ginsburg A., Yeh J., Hennig S. B., Denton M. D. Some effects of adenylylation on the biosynthetic properties of the glutamine synthetase from Escherichia coli. Biochemistry. 1970 Feb 3;9(3):633–649. doi: 10.1021/bi00805a025. [DOI] [PubMed] [Google Scholar]
- Ginsburg A., Zolkiewski M. Differential scanning calorimetry study of reversible, partial unfolding transitions in dodecameric glutamine synthetase from Escherichia coli. Biochemistry. 1991 Oct 1;30(39):9421–9429. doi: 10.1021/bi00103a005. [DOI] [PubMed] [Google Scholar]
- Haschemeyer R. H., Wall J. S., Hainfeld J., Maurizi M. R. Scanning transmission electron microscopy of submolecular oligomers of stabilized glutamine synthetase from Escherichia coli. J Biol Chem. 1982 Jun 25;257(12):7252–7253. [PubMed] [Google Scholar]
- Hunt J. B., Ginsburg A. Some kinetics of the interaction of divalent cations with glutamine synthetase from Escherichia coli. Metal ion induced conformational changes. Biochemistry. 1972 Sep 26;11(20):3723–3735. doi: 10.1021/bi00770a010. [DOI] [PubMed] [Google Scholar]
- Hunt J. B., Ross P. D., Ginsburg A. A calorimetric study of the interaction of Mn 2+ with glutamine synthetase from Escherichia coli. Biochemistry. 1972 Sep 26;11(20):3716–3722. doi: 10.1021/bi00770a009. [DOI] [PubMed] [Google Scholar]
- Hunt J. B., Smyrniotis P. Z., Ginsburg A., Stadtman E. R. Metal ion requirement by glutamine synthetase of Escherichia coli in catalysis of gamma-glutamyl transfer. Arch Biochem Biophys. 1975 Jan;166(1):102–124. doi: 10.1016/0003-9861(75)90370-7. [DOI] [PubMed] [Google Scholar]
- Jaenicke R. Folding and association of proteins. Prog Biophys Mol Biol. 1987;49(2-3):117–237. doi: 10.1016/0079-6107(87)90011-3. [DOI] [PubMed] [Google Scholar]
- Kawahara K., Tanford C. Viscosity and density of aqueous solutions of urea and guanidine hydrochloride. J Biol Chem. 1966 Jul 10;241(13):3228–3232. [PubMed] [Google Scholar]
- Lapanje S., Lunder M., Vlachy V., Skerjanc J. Thermodynamics of the isothermal interaction of beta-lactoglobulin with guanidinium chloride and urea. Biochim Biophys Acta. 1977 Apr 25;491(2):482–490. doi: 10.1016/0005-2795(77)90291-4. [DOI] [PubMed] [Google Scholar]
- Makhatadze G. I., Privalov P. L. Hydration effects in protein unfolding. Biophys Chem. 1994 Aug;51(2-3):291–309. doi: 10.1016/0301-4622(94)00050-6. [DOI] [PubMed] [Google Scholar]
- Makhatadze G. I., Privalov P. L. Protein interactions with urea and guanidinium chloride. A calorimetric study. J Mol Biol. 1992 Jul 20;226(2):491–505. doi: 10.1016/0022-2836(92)90963-k. [DOI] [PubMed] [Google Scholar]
- Maurizi M. R., Ginsburg A. Active site ligand stabilization of quaternary structures of glutamine synthetase from Escherichia coli. J Biol Chem. 1982 Jun 25;257(12):7246–7251. [PubMed] [Google Scholar]
- Maurizi M. R., Ginsburg A. Active-site ligand binding and subunit interactions in glutamine synthetase from Escherichia coli. Curr Top Cell Regul. 1985;26:191–206. doi: 10.1016/b978-0-12-152826-3.50022-x. [DOI] [PubMed] [Google Scholar]
- Maurizi M. R., Ginsburg A. Adenosine 5'-triphosphate analogues as structural probes for Escherichia coli glutamine synthetase. Biochemistry. 1986 Jan 14;25(1):131–140. doi: 10.1021/bi00349a020. [DOI] [PubMed] [Google Scholar]
- Pfeil W., Privalov P. L. Thermodynamic investigations of proteins. II. Calorimetric study of lysozyme denaturation by guanidine hydrochloride. Biophys Chem. 1976 Jan;4(1):33–40. doi: 10.1016/0301-4622(76)80004-x. [DOI] [PubMed] [Google Scholar]
- Ragone R., Colonna G., Balestrieri C., Servillo L., Irace G. Determination of tyrosine exposure in proteins by second-derivative spectroscopy. Biochemistry. 1984 Apr 10;23(8):1871–1875. doi: 10.1021/bi00303a044. [DOI] [PubMed] [Google Scholar]
- Sijpkes A. H., van de Kleut G. J., Gill S. C. Urea-diketopiperazine interactions: a model for urea induced denaturation of proteins. Biophys Chem. 1993 Apr;46(2):171–177. doi: 10.1016/0301-4622(93)85024-c. [DOI] [PubMed] [Google Scholar]
- Stadtman E. R., Smyrniotis P. Z., Davis J. N., Wittenberger M. E. Enzymic procedures for determining the average state of adenylylation of Escherichia coli glutamine synthetase. Anal Biochem. 1979 May;95(1):275–285. doi: 10.1016/0003-2697(79)90217-3. [DOI] [PubMed] [Google Scholar]
- Timasheff S. N. Water as ligand: preferential binding and exclusion of denaturants in protein unfolding. Biochemistry. 1992 Oct 20;31(41):9857–9864. doi: 10.1021/bi00156a001. [DOI] [PubMed] [Google Scholar]
- Villafranca J. J., Ash D. E., Wedler F. C. Manganese (II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). II. Electron paramagnetic resonance and nuclear magnetic resonance studies of enzyme-bound manganese(II) with substrates and a potential transition-state analogue, methionine sulfoximine. Biochemistry. 1976 Feb 10;15(3):544–553. doi: 10.1021/bi00648a014. [DOI] [PubMed] [Google Scholar]
- Wiseman T., Williston S., Brandts J. F., Lin L. N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem. 1989 May 15;179(1):131–137. doi: 10.1016/0003-2697(89)90213-3. [DOI] [PubMed] [Google Scholar]
- Woolfolk C. A., Shapiro B., Stadtman E. R. Regulation of glutamine synthetase. I. Purification and properties of glutamine synthetase from Escherichia coli. Arch Biochem Biophys. 1966 Sep 26;116(1):177–192. doi: 10.1016/0003-9861(66)90026-9. [DOI] [PubMed] [Google Scholar]
- Yamashita M. M., Almassy R. J., Janson C. A., Cascio D., Eisenberg D. Refined atomic model of glutamine synthetase at 3.5 A resolution. J Biol Chem. 1989 Oct 25;264(30):17681–17690. doi: 10.2210/pdb2gls/pdb. [DOI] [PubMed] [Google Scholar]
- Zolkiewski M., Ginsburg A. Thermodynamic effects of active-site ligands on the reversible, partial unfolding of dodecameric glutamine synthetase from Escherichia coli: calorimetric studies. Biochemistry. 1992 Dec 8;31(48):11991–12000. doi: 10.1021/bi00163a006. [DOI] [PubMed] [Google Scholar]
