Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Aug;4(8):1457–1469. doi: 10.1002/pro.5560040803

Characterization of a new four-chain coiled-coil: influence of chain length on stability.

R Fairman 1, H G Chao 1, L Mueller 1, T B Lavoie 1, L Shen 1, J Novotny 1, G R Matsueda 1
PMCID: PMC2143186  PMID: 8520471

Abstract

Limited information is available on inherent stabilities of four-chain-coils. We have developed a model system to study this folding motif using synthetic peptides derived from sequences contained in the tetramerization domain of Lac repressor. These peptides are tetrameric as judged by both gel filtration and sedimentation equilibrium and the tetramers are fully helical as determined by CD. The four-chain coiled-coils are well folded as judged by the cooperativity of thermal unfolding and by the extent of dispersion in aliphatic chemical shifts seen in NMR spectra. In addition, we measured the chain length dependence of this four-chain coiled-coil. To this end, we developed a general procedure for nonlinear curve fitting of denaturation data in oligomeric systems. The dissociation constants for bundles that contain alpha-helical chains 21, 28, and 35 amino acids in length are 3.1 x 10(-12), 6.7 x 10(-23), and 1.0 x 10(-38) M3, respectively. This corresponds to tetramer stabilities (in terms of the peptide monomer concentration) of 180 microM, 51 nM, and 280 fM, respectively. Finally, we discuss the rules governing coiled-coil formation in light of the work presented here.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberti S., Oehler S., von Wilcken-Bergmann B., Müller-Hill B. Genetic analysis of the leucine heptad repeats of Lac repressor: evidence for a 4-helical bundle. EMBO J. 1993 Aug;12(8):3227–3236. doi: 10.1002/j.1460-2075.1993.tb05992.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bruccoleri R. E., Karplus M. Prediction of the folding of short polypeptide segments by uniform conformational sampling. Biopolymers. 1987 Jan;26(1):137–168. doi: 10.1002/bip.360260114. [DOI] [PubMed] [Google Scholar]
  3. Chakerian A. E., Tesmer V. M., Manly S. P., Brackett J. K., Lynch M. J., Hoh J. T., Matthews K. S. Evidence for leucine zipper motif in lactose repressor protein. J Biol Chem. 1991 Jan 25;266(3):1371–1374. [PubMed] [Google Scholar]
  4. Chakrabartty A., Kortemme T., Padmanabhan S., Baldwin R. L. Aromatic side-chain contribution to far-ultraviolet circular dichroism of helical peptides and its effect on measurement of helix propensities. Biochemistry. 1993 Jun 1;32(21):5560–5565. doi: 10.1021/bi00072a010. [DOI] [PubMed] [Google Scholar]
  5. Chen J., Matthews K. S. Deletion of lactose repressor carboxyl-terminal domain affects tetramer formation. J Biol Chem. 1992 Jul 15;267(20):13843–13850. [PubMed] [Google Scholar]
  6. Chen J., Surendran R., Lee J. C., Matthews K. S. Construction of a dimeric repressor: dissection of subunit interfaces in Lac repressor. Biochemistry. 1994 Feb 8;33(5):1234–1241. doi: 10.1021/bi00171a025. [DOI] [PubMed] [Google Scholar]
  7. Chmielewski J., Lipton M. The rational design of highly stable, amphiphilic helical peptides. Int J Pept Protein Res. 1994 Aug;44(2):152–157. doi: 10.1111/j.1399-3011.1994.tb00570.x. [DOI] [PubMed] [Google Scholar]
  8. Cregut D., Liautard J. P., Heitz F., Chiche L. Molecular modeling of coiled-coil alpha-tropomyosin: analysis of staggered and in register helix-helix interactions. Protein Eng. 1993 Jan;6(1):51–58. doi: 10.1093/protein/6.1.51. [DOI] [PubMed] [Google Scholar]
  9. Fairman R., Beran-Steed R. K., Anthony-Cahill S. J., Lear J. D., Stafford W. F., 3rd, DeGrado W. F., Benfield P. A., Brenner S. L. Multiple oligomeric states regulate the DNA binding of helix-loop-helix peptides. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10429–10433. doi: 10.1073/pnas.90.22.10429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Friedman A. M., Fischmann T. O., Steitz T. A. Crystal structure of lac repressor core tetramer and its implications for DNA looping. Science. 1995 Jun 23;268(5218):1721–1727. doi: 10.1126/science.7792597. [DOI] [PubMed] [Google Scholar]
  11. Hagihara Y., Oobatake M., Goto Y. Thermal unfolding of tetrameric melittin: comparison with the molten globule state of cytochrome c. Protein Sci. 1994 Sep;3(9):1418–1429. doi: 10.1002/pro.5560030908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Handel T. M., Williams S. A., DeGrado W. F. Metal ion-dependent modulation of the dynamics of a designed protein. Science. 1993 Aug 13;261(5123):879–885. doi: 10.1126/science.8346440. [DOI] [PubMed] [Google Scholar]
  13. Harbury P. B., Zhang T., Kim P. S., Alber T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science. 1993 Nov 26;262(5138):1401–1407. doi: 10.1126/science.8248779. [DOI] [PubMed] [Google Scholar]
  14. Harris N. L., Presnell S. R., Cohen F. E. Four helix bundle diversity in globular proteins. J Mol Biol. 1994 Mar 11;236(5):1356–1368. doi: 10.1016/0022-2836(94)90063-9. [DOI] [PubMed] [Google Scholar]
  15. Johnson M. L., Correia J. J., Yphantis D. A., Halvorson H. R. Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys J. 1981 Dec;36(3):575–588. doi: 10.1016/S0006-3495(81)84753-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knott G. D. Mlab--a mathematical modeling tool. Comput Programs Biomed. 1979 Dec;10(3):271–280. doi: 10.1016/0010-468x(79)90075-8. [DOI] [PubMed] [Google Scholar]
  17. Krylov D., Mikhailenko I., Vinson C. A thermodynamic scale for leucine zipper stability and dimerization specificity: e and g interhelical interactions. EMBO J. 1994 Jun 15;13(12):2849–2861. doi: 10.1002/j.1460-2075.1994.tb06579.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kumar A., Ernst R. R., Wüthrich K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun. 1980 Jul 16;95(1):1–6. doi: 10.1016/0006-291x(80)90695-6. [DOI] [PubMed] [Google Scholar]
  19. Lau S. Y., Taneja A. K., Hodges R. S. Synthesis of a model protein of defined secondary and quaternary structure. Effect of chain length on the stabilization and formation of two-stranded alpha-helical coiled-coils. J Biol Chem. 1984 Nov 10;259(21):13253–13261. [PubMed] [Google Scholar]
  20. Liu T. Y., Boykins R. A. Hydrolysis of proteins and peptides in a hermetically sealed microcapillary tube: high recovery of labile amino acids. Anal Biochem. 1989 Nov 1;182(2):383–387. doi: 10.1016/0003-2697(89)90612-x. [DOI] [PubMed] [Google Scholar]
  21. Monera O. D., Kay C. M., Hodges R. S. Electrostatic interactions control the parallel and antiparallel orientation of alpha-helical chains in two-stranded alpha-helical coiled-coils. Biochemistry. 1994 Apr 5;33(13):3862–3871. doi: 10.1021/bi00179a010. [DOI] [PubMed] [Google Scholar]
  22. O'Neil K. T., DeGrado W. F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science. 1990 Nov 2;250(4981):646–651. doi: 10.1126/science.2237415. [DOI] [PubMed] [Google Scholar]
  23. ROSEN H. A modified ninhydrin colorimetric analysis for amino acids. Arch Biochem Biophys. 1957 Mar;67(1):10–15. doi: 10.1016/0003-9861(57)90241-2. [DOI] [PubMed] [Google Scholar]
  24. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  25. Robinson C. R., Sligar S. G. Electrostatic stabilization in four-helix bundle proteins. Protein Sci. 1993 May;2(5):826–837. doi: 10.1002/pro.5560020512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Royer C. A., Chakerian A. E., Matthews K. S. Macromolecular binding equilibria in the lac repressor system: studies using high-pressure fluorescence spectroscopy. Biochemistry. 1990 May 22;29(20):4959–4966. doi: 10.1021/bi00472a028. [DOI] [PubMed] [Google Scholar]
  27. Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
  28. Sheridan R. P., Levy R. M., Salemme F. R. alpha-Helix dipole model and electrostatic stabilization of 4-alpha-helical proteins. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4545–4549. doi: 10.1073/pnas.79.15.4545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Su J. Y., Hodges R. S., Kay C. M. Effect of chain length on the formation and stability of synthetic alpha-helical coiled coils. Biochemistry. 1994 Dec 27;33(51):15501–15510. doi: 10.1021/bi00255a032. [DOI] [PubMed] [Google Scholar]
  30. Terwilliger T. C., Eisenberg D. The structure of melittin. I. Structure determination and partial refinement. J Biol Chem. 1982 Jun 10;257(11):6010–6015. doi: 10.2210/pdb1mlt/pdb. [DOI] [PubMed] [Google Scholar]
  31. Thompson K. S., Vinson C. R., Freire E. Thermodynamic characterization of the structural stability of the coiled-coil region of the bZIP transcription factor GCN4. Biochemistry. 1993 Jun 1;32(21):5491–5496. doi: 10.1021/bi00072a001. [DOI] [PubMed] [Google Scholar]
  32. Wilcox W., Eisenberg D. Thermodynamics of melittin tetramerization determined by circular dichroism and implications for protein folding. Protein Sci. 1992 May;1(5):641–653. doi: 10.1002/pro.5560010510. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES